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Motivation & Objective
Various domains, including critical infrastructures, industry, and the private sector, deploy
cyber-physical systems (CPS). These systems integrate IT and OT components and interact
with the environment. CPS often operate as black boxes, hindering effective attack detection.
Our research addresses the challenge of detecting attacks in CPS relying on network data
and learning on normal behavior.
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How can we detect attacks in CPS by relying on
network data and without specific attack instances?

Contributions
• We explore novel one-class learning for attack detection on temporal graph structures in
CPS based on network communication.

• We create a benchmark for graph-based attack detection for CPS on two datasets and
provide the first baselines.

• We analyze the strengths and weaknesses of Edgebank and TGN in this environment and
identify the potential for improvement in pre-processing, method application, and datasets.

Methodology

Datasets Loaders Models Evaluation Results

Datasets & Loaders
Datasets: TON IoT [1] & Edge IIoT [2]. We
treat each IP address as a node and each flow
as an event.

TON IoT Edge IIoT

Nodes 16.745 165.160
Edges 461.043 2.096.419

Train Edges 100.000 100.000
Benign Edges 161.043 603.558

Negative sampling for training: We
randomly permute the source and desti-
nation node for every event to generate a
negative sample for every positive sample.
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Baseline: EdgeBank
• EdgeBank [3], is memorization-based.

• The memory holds known connections with-
out considering attributes.

• Recognition is based on a comparison the
batch with the current state of the memory.

• There are two variants: The unlimited ∞
and time window-based tw version.

• As an example, we take the graph from
above and infer the last three.
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Results
Strategy EdgeBank∞ EdgeBanktw TGNavg(e50)

Predicted Knowledge 0.76 0.99 0.69 0.99 0.64 0.60
Attack Knowledge 0.90 0.99 0.89 0.99 0.72 0.63

Blind 0.09 0.52 0.13 0.52 0.39 0.52
None 0.77 0.99 0.77 0.99 0.73 0.77

Conclusions
• Our experiments revealed that EdgeBank, a heuristic, suffices for simple attacks.

• Although EdgeBank outperformed TGN in this experiments.

• However, for more complex attacks, EdgeBank fails because it recognizes every incoming
connection as benign if it is in memory.

• TGN demonstrated potential but requires further exploration.

Temporal Graph Networks

• TGN [4] comprises a memory module, message function, aggregator, updater, and final
embedding. The decoder uses a multilayer perceptron to output probabilities.

• We used supervised learning with negative sampling.

• Our objective function is to minimize the binary cross entropy.
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Figure 1: Computations performed by TGN on a batch of time-stamped interactions. Top: embeddings
are produced by the embedding module using the temporal graph and the node’s memory (1). The
embeddings are then used to predict the batch interactions and compute the loss (2, 3). Bottom: these
same interactions are used to update the memory (4, 5, 6). This is a simplified flow of operations
which would prevent the training of all the modules in the bottom as they would not receiving a
gradient. Section 3.2 explains how to change the flow of operations to solve this problem and figure 2
shows the complete diagram.

Thanks to this specific module, TGNs have the capability to memorize long term dependencies for
each node in the graph. When a new node is encountered, its memory is initialized as the zero vector,
and it is then updated for each event involving the node, even after the model has finished training.
While a global (graph-wise) memory can also be added to the model to track the evolution of the
entire network, we leave this as future work.

Message Function. For each event involving node i, a message is computed to update i’s memory.
In the case of an interaction event eij(t) between source node i and target node j at time t, two
messages can be computed:
mi(t) = msgs

�
si(t

�), sj(t
�),�t, eij(t)

�
, mj(t) = msgd

�
sj(t

�), si(t
�),�t, eij(t)

�
(1)

Similarly, in case of a node-wise event vi(t), a single message can be computed for the node involved
in the event:

mi(t) = msgn

�
si(t

�), t,vi(t)
�
. (2)

Here, si(t
�) is the memory of node i just before time t (i.e., from the time of the previous inter-

action involving i) and msgs, msgd and msgn are learnable message functions, e.g. MLPs. In all
experiments, we choose the message function as identity (id), which is simply the concatenation of
the inputs, for the sake of simplicity. Deletion events are also supported by the framework and are
presented in Appendix A.1. A more complex message function that involves additional aggregation
from the neighbours of nodes i and j is also possible and is left for future study.

Message Aggregator. Resorting to batch processing for efficiency reasons may lead to multiple
events involving the same node i in the same batch. As each event generates a message in our
formulation, we use a mechanism to aggregate messages mi(t1), . . . ,mi(tb) for t1, . . . , tb  t,

m̄i(t) = agg (mi(t1), . . . ,mi(tb)) . (3)

Here, agg is an aggregation function. While multiple choices can be considered for implementing
this module (e.g. RNNs or attention w.r.t. the node memory), for the sake of simplicity we considered
two efficient non-learnable solutions in our experiments: most recent message (keep only most recent
message for a given node) and mean message (average all messages for a given node). We leave
learnable aggregation as a future research direction.

Memory Updater. As previously mentioned, the memory of a node is updated upon each event
involving the node itself:

si(t) = mem
�
m̄i(t), si(t

�)
�
. (4)
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Computations performed by TGN on a batch of time-stamped interactions [4].

Evaluation
Update Strategies: In the predicted knowledge strategy, we only use the nodes of benign
events. Attack knowledge is a fictitious scenario to see how the methods perform when only
benign nodes are used for updating. Blind is the conventional method, where all nodes are
used for the update, and no is used to make no updates.

Metrics: The confusion matrix is used for detailed analysis and the F1 score as a comparative
value.
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