
IQM4HD Concepts

Thomas Oelsner, Felix Heine, Carsten Kleiner

August 23, 2019

Contents

1. Introduction 5
1.1. Data Quality . 5
1.2. A DSL for DQ monitoring . 7
1.3. Overview . 9

2. DSL 10
2.1. Requirements . 10
2.2. Concepts . 11

2.2.1. Basic Design Decisions . 11
2.2.2. Data Model . 12
2.2.3. Sources . 13
2.2.4. Checks . 19
2.2.5. Actions . 23
2.2.6. Roles . 24
2.2.7. Return values . 28

2.3. DSL Description . 30
2.3.1. Expressions . 30
2.3.2. List expressions . 33
2.3.3. Built-in Methods . 36
2.3.4. Sources . 37
2.3.5. Checks . 39
2.3.6. Actions . 42

2.4. Environment . 44
2.5. Optimization . 44
2.6. Evaluation . 45

3. Complex DQ Rules 48
3.1. Parametrization . 49
3.2. Univariate Time Series . 49

3.2.1. Implementation . 50
3.2.2. Seasonal time series . 56

3.3. Multidimensional Data . 59
3.3.1. DSL extensions . 60
3.3.2. Profiling . 62
3.3.3. Running the check . 62

4. Profiling 64
4.1. Introduction . 64

2

Contents

4.2. Profiling, Statistics and Rule Generation 65
4.3. Profiling Methods . 66

4.3.1. NOT NULL profiling . 66
4.3.2. Range profiling . 67
4.3.3. Foreign key dependencies . 67
4.3.4. Time series profiling . 67
4.3.5. Cube profiling . 68

4.4. Design . 68
4.5. Architecure . 69

4.5.1. ProfilingMethod . 69
4.5.2. ProfilingResult . 71
4.5.3. API . 71

5. Feedback Loop 73
5.1. Return values from checks . 73
5.2. Rule types . 74
5.3. Re-profiling for individual actions . 74

5.3.1. Re-profling for NOT NULL . 74
5.3.2. Re-profiling for RangeCheck . 75
5.3.3. Re-profiling for percentage NOT NULL 75
5.3.4. Re-profiling for time series . 75
5.3.5. Re-profiling for cubes . 76

6. Related Work 77
6.1. Existing solutions for data quality monitoring 77
6.2. Individual implementation aspects . 78
6.3. Advanced rules and profiling . 79

6.3.1. Alte version . 79

7. Conclusion 81
7.1. Open Issues . 81

Appendix 82

A. Rulecatalog 83
A.1. Column property checks . 83

A.1.1. NotNullCheck . 83
A.1.2. RangeCheck . 84
A.1.3. BoundaryChecks . 85
A.1.4. PatternCheck . 85
A.1.5. ContainsCheck . 87
A.1.6. NestedDocumentValueCheck . 87

A.2. Structure analysis checks . 88
A.2.1. QuantityCheck . 88
A.2.2. SumCheck . 88

3

Contents

A.2.3. UniqueCheck . 88
A.2.4. Referential Integrity . 89
A.2.5. Functional Dependency . 89

A.3. Value checks . 90
A.3.1. DistributionCheck . 90
A.3.2. ARCheck . 91
A.3.3. CubeCheck . 92

4

1. Introduction

Both data as well as information derived from it has an increasing impact on companies,
since many short- and longterm decisions are based on the interpretation of data. In
addition to the long established relational databases, unstructured or semi-structured
data sources are gaining importance. Examples of such unstructured data are Weblogs,
data from social networks or RFID-data. Therefore, the relevance of data quality
monitoring is increasing enormously for these kind of data sources, in order to prevent
wrong decisions based on faulty analysis due to flawed data.

Main target of the IQM4HD1 joint project is the study of advanced concepts for
data quality monitoring of heterogeneous data sources. The concepts are implemented
in a prototypical tool for data quality analysis. At the heart of the solution, we define
a DSL called RADAR that is used to describe data quality rules. This tool consists of
an interpreter for this DSL, components for semi-automated detection of data quality
rules, as well as the automated monitoring of the defined quality rules.

Furthermore, focus is laid on the area of detection and derivation of data quality
rules. One goal is to automatically detect complex statistical dependencies and suggest
rules based on the results. The suggested rules will be presented using the RADAR
language. The data quality manager supervises these automatically created rules and
may adjust them. This is introduced in order to improve the rule base continuously.

A central data quality repository is introduced, which contains data quality rules as
well as metadata on rule checking executions. Besides the semi-automatically detected
rules, the data quality manager may insert manually created data quality rules. The
permanent data quality monitoring uses the rules from the central data quality repos-
itory and regularly checks those against current database content. Deviations will be
logged and reported.

In the following section of this introduction, we explain our understanding of data
quality. Then, we motivate our approach of using a special DSL for quality monitoring.
Finally, we give an overview of the rest of the report.

1.1. Data Quality

In order to provide solutions for data quality monitoring, one first has to define data
quality. The general idea of data quality is, that if data fits the requirements for its
intended use, it has quality. Complementary are several different dimensions of DQ
to describe these requirements. It has been a broadly researched topic [30, 29, 25]
and presented in [25] are sixteen different DQ dimensions including Security, Ease of

1http://iqm4hd.wp.hs-hannover.de/english.html

5

1. Introduction

Manipulation, Objectivity or Free-of-Error among others. In this project, we focus on
specific aspects of data quality, as we target quality monitoring. With our solution we
want to monitor DQ with regard to the data’s content, meaning the actual values and
their relationships. This DSL is primarily designed for the dimensions Completeness,
Consistent Representation and Free-of-Error, due to our goal to cover faulty data. On
the contrary, Dimensions like Security or Objectivity, besides others, are not of interest
to us, since they concern a completely different domain respectively.

Another point of view to describe our work is that we focus on complex constraints
that are defined with our DSL. Normally, database constraints are unable to express
all kinds of complex integrity constraints defined on a conceptual level. This is mainly
due to two reasons: On the one hand, database constraints have limited expressivity,
and on the other hand, they are evaluated during online operation and thus have
negative performance impacts. The latter issue often leads to disabled constraints
due to performance bottlenecks. Here, our approach comes into play to provide a
monitoring system that checks constraints offline in regular intervals that are either
not expressible in that database constraint language or that cannot be activated due
to performance considerations.

Furthermore, our system can check constraints that span multiple databases, even
from different vendors and with different query languages. Thus, we also allow to
test the contents of a database against some reference database, or to test the mutual
consistency of different databases.

Figure 1.1.: Different types of inaccurate data as described by Jack E. Olsen [24].

Our approach uses data quality rules to create a foundation with which to monitor
data continuously. These data quality rules are supposed to cover the aspect of data
quality mentioned beforehand, i.e. invalid values. Therefore, we base them on the
description of inaccurate data by Jack E. Olson [24]. He divided inaccurate data in
five different categories which are shown in figure 1.1 and are described in the following:

• Column property analysis considers single column values and is about the validity
of a single data point. This contains rules like null- or range-checks.

• Structure analysis includes, among others, investigations of primary/foreign key

6

1. Introduction

pairs and redundant or synonymic data columns. In essence it handles structural
constraints spanning multiple columns. It gives information about a set of data
rows violating a rule, instead of which particular data point does.

• Simple data rule analysis reflects the analysis of valid values with regard to a
business object. It goes beyond structural validation to semantic validation.

• Complex data rule analysis is analogous to simple data rule analysis with the
addition of checks spanning multiple business objects in contrast to just single
business objects of the aforementioned method.

• Value rule analysis is about non binary results. It checks whether the data set
as a whole could be valid including operations like checks for cardinality, counts,
averages, medians and so on. The result is a non binary answer, it leaves room
for interpretation.

Even though Olson uses these categories in a context of data profiling in order to
identify inaccurate data, we use them as a boundary to specify our area of data quality
monitoring. This is partly owed to the fact that a major component of our framework
is concerned with the analysis of data in order to propose rule candidates.

1.2. A DSL for DQ monitoring

In order to detect quality problems reliably, it is important to check the data regu-
larly. An extreme solution would be to run checks as database constraints, effectively
avoiding the insertion of wrong data. However, this approach has multiple drawbacks:
1) The check logic slows down all processes that modify the data. 2) The check logic
must be implemented inside the database and thus depends on the capabilities of the
database. Not every check can be implemented on every system, especially more com-
plex checks like statistical checks. 3) These kinds of checks often rely on proprietary
languages like stored procedure languages. 4) Implementing these checks in a modular
way, in order to apply the same logic to different databases, is often impossible. 5)
Some checks, esp. statistical checks, do not always indicate clear errors. They rather
result in warnings indicating an unusual data distribution that should be checked.
Thus always rejecting non-conformant data is not possible. 6) Checks that span mul-
tiple databases (e.g. a relational database and a document database) are impossible
with this approach.

Thus, our approach is to run the checks from an external engine that has its own
language to encode the checks, called rules in our system. For this, we designed the
RADAR DSL. In order to motivate our approach, we start with an example of a more
complex DQ rule. Assume you a customer base and you want to check whether the
date of birth is correct. Just checking ranges (i.e. no customer must be older than 100
years) would miss important quality problems. Assume e.g. you import customer data
from another source where an unknown date is encoded wrongly as 1970/01/01. This
is still a valid birth date, so that this error would never be detected using a simple

7

1. Introduction

Class Age range Probability
j = 1 [0, 18) p01 = .05
j = 2 [18, 25) p02 = .20
j = 3 [25, 35) p03 = .15
j = 4 [35, 50) p04 = .25
j = 5 [50, 65) p05 = .19
j = 6 [65, 80) p06 = .10
j = 7 [80, 95) p07 = .05
j = 8 [96,∞) p08 = .01

Table 1.1.: Reference age distribution

range check. For this, a distribution check that assesses whether the distribution of
customer’s ages follows a pre-known, typical distribution would be able to detect a
larger number of customers with birthdate 1970/01/01.

The idea behind this rule is that we have a known age distribution for our customers,
which has been derived from historic data. We now want to check continuously whether
the customer base still matches this distribution. The mathematics behind this check
is a X 2 test. First, we need the reference distribution. It is defined as probabilities for
the age classes, see table 1.1. We have m = 8 classes with a probability p0j for each
class.

Now we have the current customer data, consisting of n customers with age in-
formation. We count the number of customers in each class Nj . We then compute
the expected number of customers in each class as n0j = p0jn. The test statistic is
computed as follows:

X 2 =

m∑
j=1

(Nj − n0j)2

n0j
(1.1)

Under the null hypothesis (the customer age is distributed according to the reference
distribution), this value follows a chi-square distribution with m − 1 = 7 degrees of
freedom. This means, that we have a 95% chance that X 2 < 14.07 under the null
hypothesis. Thus 14.07 might be a good threshold to issue a data quality alert.

Now assume the data is stored in a relational table customer(id, name, dob),
where dob is the date of birth, and the reference distribution is stored in another table
ref age dist(j, from, to, pj). Using SQL, a check can be written as follows:

Listing 1.1: SQL check for age distribution.

SELECT * FROM (

SELECT SUM((Nj -n*pj)*(Nj -n*pj) / (n*pj)) Xsq

FROM (

SELECT d.pj, COUNT (*) Nj ,

(SELECT COUNT (*) FROM customer

WHERE dob IS NOT NULL) n

FROM (SELECT TRUNC(months_between(sysdate , dob)/12)

8

1. Introduction

AS age

FROM customer WHERE dob IS NOT NULL) c

JOIN ref_age_dist d

ON c.age >= d.from_age

AND (c.age < d.to_age OR d.to_age IS NULL)

GROUP BY d.j, d.pj

)

) WHERE Xsq >= 14.07;

However, this code combines several aspects in one single statement. The state-
ment contains code to access the data (customer), access the reference distribution
(ref age dist), the preprocessing of the customer data (filter customers without dob,
convert dob to age), the aggregation of customer data to age classes, the logic to
compute the test statistic, and the final evaluation of the threshold. This has several
drawbacks:

• The code is hard to understand due to missing modularization. The different user
types explained in the previous section are all merged in this single statement
and thus will have to create it together without any separation of concerns.

• The logic is not reusable. In order to check another data source against another
distribution, the whole code has to be copied and adapted.

• The code is specific for relational databases. The same data e.g. in a MongoDB
system cannot be checked. In this case, it even contains system-specific code
(Oracle functions months between, sysdate), thus just porting it to PostgreSQL
would mean to modify the code.

• The code must be executed on the target database.

Our approach and the DSL RADARaim to remedy these drawbacks.

1.3. Overview

The remaining report is structured as follows. ...

9

2. DSL

This chapter introduces the proposed language, that we call RADAR. The goal of
the DSL is to create a basis with which to easily compose data quality rules for
identifying the inaccurate data described in the previous section. First, we explain the
requirements for the DSL that drive our design decisions. Then we explain the basic
design and describe the main concepts of the language. In the subsequent section, we
specify the syntax and semantics of the language in depth.

Furthermore, we describe the rule catalog that contains many pre-defined types
of quality checks that can modularly be used in projects, like a standard library in
other languages. In the section “Environment” we describe the interaction with the
environment, e.g. the scheduler that initiates the invocation of the rules. The final
section describes implementation details, including the parsing process, the internal
representation, the execution engine, and optimization techniques.

At first we look at what information is needed to compose data quality rules, and
secondly which roles are present in our system. Information needed for quality rules
includes (i) what data should be checked, (ii) what quality aspect should the data be
checked for and lastly (iii) what should be done with the result. Regarding roles, we
suggest a separation between the technical aspects of data retrieval and the subject-
specific knowledge needed for writing coherent rules. Firstly, the technical user with
knowledge about database relevant issues and secondly, the data quality manager with
knowledge about the data’s meaning. Whereas the technical user just prepares the
data for the data quality manager, the latter will - with his knowledge about the data
- compose data quality rules or adjust automatically generated rules.

For a start we outline the requirements a language for data quality rules should
fulfill and consecutively we introduce each aspect of the language itself, concluding
with a summary of the results.

2.1. Requirements

In order to design a rule language that fits our ideas we start with defining requirements
the language has to fulfill:

1. Reusability First, the constraint logic has to be defined in a flexible and reusable
way. This means, we need a language that supports the definition of various
constraint types in a concise manner. It further means, that the logic behind
the constraint is decoupled from the actual database and DBMS to which the
constraint is applied.

10

2. DSL

2. Optimizability For efficient execution, it must be possible to execute most
of the logic of the constraints directly on the database using DBMS features.
However, in case of limited resources of the database server, or in case of limited
capabilities of the DBMS, it must also be possible to execute the logic within our
system. So the language cannot specify the exact way of executing a constraint
check and has to leave room for optimization by the execution logic.

3. User groups In our system multiple persons with different expertise will be
involved. First, there are experts for the data sources to be monitored, that
understand the data models of these systems. Second, we have domain experts
that understand the business logic and can define which data is valid from a
business point of view. Third, there are programmers that understand how to
code the business logic programmatically. We need the respective parts of the
language to be accessible by the corresponding groups.

4. Heterogeneous Data Sources The data quality rules should be independent
of the underlying data source where the actual data is stored. For instance,
the same rules should be usable for customer data originating from a relational
database system as well as originating from a document database. Thus, the
rules can neither be specified in the database’s own language nor rely on the
data being accessible in a specific data model at all.

5. Advanced Quality Rules Apart from rather simple data quality checks such
as non-null or range checks the rule language should also provide the option to
specify advanced data quality checks. Examples of these types of checks that
we implemented in our prototype include cube analysis checks that determine
dimensions in a data cube providing explanations for data quality problems that
reflect only on a higher aggregation level in first place. Another example is a
time series check where outliers in time series according to a flexible series model
are discovered.

6. Extensibility Not all desired quality checks are known at design time. For
example the advanced quality rules explained above have only been discovered
throughout the course of the project. Consequently, the RADARlanguage has
to be extensible. That means apart from a fixed set of provided data quality
rules, developers have to be able to implement their own data quality rules with
the language in an easy way, which can then be executed in the same way as the
provided rules.

2.2. Concepts

2.2.1. Basic Design Decisions

Derived from aforementioned requirements combined with the knowledge about what
information is needed for data quality rules, our proposed DSL will be split into three
main parts; Sources, Checks and Actions. Sources are meant for data description,

11

2. DSL

whereas Checks depict archetypes of data quality rules, like a simple check for null
values. The Actions combine Sources and Checks to form data quality rules. Whereas
Sources and Checks are more on the technical side, Actions were designed with natural
language in mind, so that the purpose of any given Action is obvious. The following
subsections will introduce each aspect of the DSL and give a few examples on how
they may look.

The Source layer will be defined by the source system experts and defines a uniform
access layer providing those schema objects for the next layers that are subject to
quality monitoring. Within the sources, queries in the native language specify how data
is retrieved from the system. Each Check basically defines a logic that specifies whether
given data contains quality problems. The Check is decoupled from concrete sources
and is defined using a flexible parametrization. Actions, finally, define which Checks
will be called using which data sources (and probably other parameters specifying
the behavior of the check). This decoupling solves the first requirement, as Checks
are reusable for different actions. Furthermore, the third requirement is solved as
programmers can define Check logic, while the domain experts define actions. The
second requirement, optimizability, is solved by declarative semantics in the Check
language together with the implementation of the execution engine. The details of
this implementation will be described later.

There will be two kinds of Checks. First, we have general purpose Checks that define
logic that is useful in many databases. These Checks include standard column checks
like range or NULL checks, structural checks like foreign key checks, participation
constraints and uniqueness tests. Also standardized statistical tests like time series
tests or distribution tests fall into this category. We aim to provide a growing set of
standard checks that can be used out of the box. We call this set the rule catalog.
Second, we will have domain specific checks that describe specific business rules for
some application domain. These checks are typically written by programmers during
a project. The domain experts then can use this toolbox of various checks to define
quality rules on the data.

An important validation for the language is to show the reusability of checks. This
is done by showing that the parametrization of Checks is flexible enough so that all
predefined Checks can be used on two completely different target databases without
the need to write new check logic, only by applying existing Checks to the defined
Sources.

With the modularity comes another advantage: it allows for expandability in two
ways. Firstly, it allows us to progressively add support for different kind of data,
starting with relational data, ranging to NoSQL DBMS or even plain documents.
Secondly, it allows for extensibility with regard to rule types.

2.2.2. Data Model

The basic data type of data in our DSL is a record. These records are similar to
the relational model, however, with one important distinction. Each record carries
so-called roles instead of attribute names. Each attribute can have multiple roles,
and each role can be assigned to multiple attributes. As an example, the following

12

2. DSL

illustrates a customer record:

group id firstname lastname birthdate telephone
identifier identifier name name

A 12345 Jon Doe 5/7/1980 111-222-33333

In this case, the first attribute has the roles “group” and “identifier”. However, the
role “identifier” is assigned to the first two columns. When we access this role in our
DSL, we effectively access the two-attribute record (’A’, 12345). This is a very flexible
and convenient way to write code that can handle either attributes or compound
data using a single name / parameter. The order of the attributes is important.
The attributes of the record have basic data types, like strings, integers, doubles or
booleans, and there is a NULL value. There is no explicit data type definition, each
value carries its own type information. A non-existing role in a record is implicitly
treated as value NULL.

The next higher level structure is a list of records. The records in a single list do
not need to be homogeneous, each record can have a different set of roles and the data
types of the same role could vary across the records.

This way, we can map both structures from relational databases as well as document-
oriented databases to our internal model. Even other data sources are supported as
long as they can be mapped to a list of records. The relational mapping is straight-
forward, while the mapping from documents flattens the documents. Sub-documents
are mapped into a flat structure using role names with dot notation. Arrays are either
ignored or an unwind operation (see e. g. https://docs.mongodb.com/manual/reference/

operator/aggregation/unwind) is used to map each array element to a new instance of
the surrounding document together with this element, according to the needs of the
quality check logic.

2.2.3. Sources

Sources are the interface to databases or other reference values a domain expert may
work with when composing data quality rules. There are two main types of Sources.
On the one hand there is the domain mapping layer, which maps database structures
to Sources, like the customer Source from listing 2.3, referring to a customer table.
On the other hand, there are constant values, patterns or complex parameter sets that
e.g. describe statistical models. These constants are also defined as Sources for use in
data quality rules. An example for this kind of Source is shown in listing 2.1, an email
pattern. This pattern could be used to check the customers emails for invalid entries.
A statistical parameter set could be a histogram containing a reference distribution
to check the age distribution of customers, as shown in listing 2.2. The unification of
patterns, constant values and the domain mapping layer to Sources was introduced to
simplify the work of domain experts.

Listing 2.1: DSL code for an email pattern.

SOURCE EmailPattern TYPE CONST ROLES (email):

13

https://docs.mongodb.com/manual/reference/operator/aggregation/unwind
https://docs.mongodb.com/manual/reference/operator/aggregation/unwind

2. DSL

"[a-z0 -9._%+-]+@[a-z0 -9. -]+\.[a-z]{2 ,4}"

END

Listing 2.2: DSL code for a reference historgram.

SOURCE AgeHistogram TYPE LIST CONST ROLES (from , to , bin ,

↪→ perc):

[0, 18, "0-18", .05],

[18, 25, "18-25", .20],

[25, 35, "25-35", .15],

[35, 50, "35-50", .25],

[50, 65, "50-65", .19],

[65, 80, "65-80", .10],

[80, 95, "80-95", .05],

[95, NULL , "95-", .01]

END

The domain mapping layer is the focal point of Sources. It was designed to create
an interface between the technical and the domain-specific side of data quality rules.
The goal is to provide an easy way for domain experts to work with the underlying
data. Since Sources are written in the databases own language, it is an assignment
for technical users to prepare Sources for domain experts. The customer example in
listing 2.3 shows a generic SQL statement selecting the id, name, dob (date of birth)
and email amongst others from the customer table. Additional meta information is
added by declaring the field id as the identifying value of this data construct. The
identifier cust references a database connection that has to be configured in the system.

Having the source layer as an intermediate layer between rules and the target
database allows a very flexible way to define data access for any system using the
system owns query language and to map structures to the domain layer accessed in
the next parts of the DSL.

Listing 2.3: DSL code for a Customer Source.

SOURCE Customer TYPE LIST QUERY ROLES (id: IDENTIFIER):

DATABASE cust NATIVE

SELECT id, name , firstname , dob , email ,

title , bonus

FROM customer

END

Beside the simple selection of e.g. tables and fields, it is also possible to do a pre-
filtering of data based on technical structures. An example could be a large unified
table containing data from different branches in various countries. The table contains a
field that divides the data by country. A Source definition could look like the customer
example in listing 2.3 with the addition of ”WHERE country LIKE ’DE’” at the end of
the SQL statement. Being able to restrict Sources this way has two advantages, the

14

2. DSL

first one is the avoidance of legal issues, whereas the second benefit considers semantic
issues. A domain expert working for e.g. the German branch of the company may only
be legally allowed to view and inspect customers of German branches. The restriction
of the Source to contain only data tuples with the country code for Germany ensures
that. The other benefit, as mentioned beforehand, would be the semantic differences
between various data sets. Coming back to the example with a Source only containing
German customers, there are semantic differences in the way ZIP codes, telephone
numbers or street names (among others), are formatted in different languages. This
separation allows for data quality rules, explicitly designed for, in this case, the German
instances of the aforementioned data fields.

Sources referring to databases are meant to be a way to describe the structure of
the underlying data. The code contained in a Source may be altered pre-execution in
order to improve the performance of the monitoring. To provide a performant solution,
optimization - ranging from simply executing checks on databases with its performant
operations to combining multiple checks in one query - is needed when executing data
quality rules.

Resulting from all the aforementioned design choices, a key part of defining domain
mapping layer objects can be derived.

A Source should be defined as simple as possible and should not contain
calculations related to data quality checks in its definition.

Additional structural information in form of roles, may be given in the header of a
Source, like seen at the IDENTIFIER tag in the customer example. To further expand on
the IDENTIFIER example, it is useful when evaluating the given data with data quality
rules. A detected data quality issue may be displayed by showing the violated rule
and the tuples leading to the violation. When using more complex analysis methods,
Sources may need to be enhanced as well. For example, in time series analysis the
frequency of data points has to be known, or an offset may be declared. In data cube
analysis, the cube model and other metadata is necessary as well. Constant Sources
may use roles as a way to name the constant values, as seen in listing 2.2, the three
columns of the record are name “from”, “to” and “perc” respectively.

Mapping of database query results to source data

In the case of using a query for sources the query to retrieve data from the underlying
database is expressed in the database’s own query language. Nevertheless the result
of such a query has to be mapped to internal structures in order to be used in the
defined source in further processing steps of the DSL. The mapping from database
query result to source structure depends on the type of external database system used.
In this project we use traditional relational databases as well as document database
systems as examples. In case the DSL will be extended to other types of external
data sources the following mapping considerations will have to be extended to these
database types.

15

2. DSL

Mapping from relational database systems

In the case of relational database systems a query will be a SQL query which in general
returns a result relation, i.e. a list of tuple values (v1, ..., vn) which are homogeneous.
This means that all tuples have identical length n, identical attribute names a1, ..., an
for their attributes and each of these attributes ai has the same datatype τi for all
tuples. All datatypes τi are typically simple datatypes in relational database systems
such as numbers, strings, dates, etc. Object-relational features of a database such as
array or structured types are not considered here.

Usually the a database query will result in a LIST source. So every tuple of the query
result will be mapped to a LIST element in the source. The ai are used as the names
of the tuples’ attributes within the data source by default. They can be renamed by
using role names as described above.

If a database query is not defined as a LIST source it may only return a single row.
This row may internally have the same structure as rows which are part of a LIST

source. In case the row consists of multiple attributes the result is treated as a record
value where each attribute name ai is used as name for value part vi of the record.
Again, attribute names can be renamed using roles as before. If only a single row with
a single attribute is returned by a query the result can be mapped to a CONST value
which, by default, is named as the attribute’s name.

In line with the general approach of our DSL concept there is no declaration of types
for the query results and their components. Nevertheless, certain functionality in the
later processing steps of the DSL may require data to be of a certain type in order to
be usable. Responsibility to ensure that these requirements are met stay at the side of
the DSL user. Failure to meet these requirements may result in errors by components
processing data in quality checks at runtime.

Mapping from document database systems

Similar to relational database systems, queries in the database’s own query language
are also used to retrieve data from document databases. In general the result of a query
in a document database is a list of documents matching the query. Thus, usually the
corresponding SOURCE in the DSL will be declared as a LIST type where each of the
result documents from the query is mapped to a list element in the SOURCE.

Listing 2.4: DSL code for a Customer Source from a Document DB.

SOURCE CustomerMongo1 TYPE LIST QUERY

ROLES (_id: IDENTIFIER):

DATABASE custmongo NATIVE

db.customer.find()

END

Nevertheless, there are significant differences between these document objects and
a tuple retrieved from a relational database system as discussed above:

1. Each of the documents in the query result may have a different structure, i. e. even
though for every single document its internal structure consists of a set of keys

16

2. DSL

k1, ..., kn identifying associated values v1, ..., vn, both the names ki of the keys
may be different between documents in a single query result as well as the number
n of values at all.

2. The datatypes τi of the values vi inside the documents may not only consist
of simple types such as strings, numbers or dates, but may also be arrays of
values, arrays of documents or a single hierarchically nested structured document
themselves.

Navigation into the document structure, i. e. accessing certain values vi within a
document, is done by specifying the corresponding key name ki which is also assigned
as the default role. Regarding the first difference as mentioned above we consider each
document individually with its own structure. That means that all documents that
do not contain a value vi for key ki which is accessed are not considered at all for a
certain check as if they were not present in the data set unless the check is a NOT NULL

check. We assume that data that is not present in a certain document will never be
relevant for any data quality check apart from checking for its presence. Thus, for
NOT NULL checks, missing keys are assumed to have a NULL value. For all other checks
documents missing a certain key ki are not considered.

For potentially large documents it is advisable to select only those keys from the
documents that will be used within this source in the other parts of the DSL. This is,
similarly to the projection in the SELECT part of a SQL statement by using a projection
operation inside the database-system specific query. An example for such a projection
in Mongo DB is shown in listing 2.5.

Listing 2.5: DSL code for a Customer Source from a Document DB with Projection.

SOURCE CustomerMongo2 TYPE LIST QUERY

ROLES (_id: IDENTIFIER):

DATABASE custmongo NATIVE

db.customer.aggregate([{

$project : {

"name" : 1, "dob" : 1,

"email" : 1, "ccn" : 1,

"default_payment" : 1, "ssn" : 1

}

}])

END

Note that the heterogeneous structure of the documents does not impose any order-
ing on the keys, i. e. it does not make a difference whether a certain key ki occurs at
the same position within the document or not. Values are solely identified by a string
matching of their key names (or assigned role names, if any).

Note in addition that even though documents can be heterogeneous in structure,
often documemt database systems assume the existence of a specific key in every
document whose value can be used to uniquely identify a document (such as the key

17

2. DSL

_id in MongoDB). This key is often a good choice for the IDENTIFIER attribute of a
source.

For documents containing values which are of the array type as described above the
DSL does not provide extensive handling capabilities for the arrays. One reason is that
typically many of the relevant array operations such as unnesting of arrays or accessing
specific elements inside an array are already provided in the document database query
language. Thus these operations can easier and more efficient be included into the
query defining a data source than re-implementing them based on the Source in our
DSL. For example in listing 2.6 we specify a Source where customer documents are
assumed to have a key address which is an array of nested documents containing
key-value pairs for each address of a customer. Due to the smart implementation of
unwind on the side of the document DB, single addresses do not even have to be stored
inside an array, but can just be a nested document. This is because unwind handles
single values in the same way as an array containing a single entry.

Listing 2.6: Customer Source from a Document DB flattening an array of addresses.

SOURCE CustomerAddress TYPE LIST QUERY ROLES (_id:

↪→ IDENTIFIER):

DATABASE custmongo NATIVE

db.customer.aggregate ([{ $unwind: "$address" }])

END

This query implicitly creates a document with the exact same key-value pairs and one
of the elements of the address array in addition. This behaviour makes it impossible to
use the document id _id as identifying information for this source as multiple elements
of the Source list will have the same value. If an identifier is required (which will often
be the case), query functionality of the underlying document database should be used
to create a composite identifier consisting of document _id and the position inside
the array value. Listing 2.7 shows how this is specified in Mongo DB. The position of
each address inside the array is added to the returned document as key adrPos, thus
creating a unique key for the document in the combination of _id and adrPos.

It should be noted though that, depending on the size of the documents and the
length of the array, this technique may significantly increase the overall size of data to
be generated in a Source. The worst case size of such a source is proportional to the
sum of the product of the largest document size and the length of the longest array.
Thus, as explained above a reduction of the document size by using an appropriate
projection should be considered wherever applicable. In addition, defining multiple
Sources for different aspects of a document collection may be more efficient in this
case when compared to defining a single source for the whole document collection.

Listing 2.7: Customer Source from a Document DB flattening address array with Iden-
tifier.

SOURCE CustAddWithPos TYPE LIST QUERY

ROLES (_id: IDENTIFIER ,

adrPos: IDENTIFIER):

18

2. DSL

DATABASE custmongo NATIVE

db.customer.aggregate ([

{ $unwind: { path : "$address",

includeArrayIndex : "adrPos" } }])

END

Finally, the behaviour regarding returning documents that do not contain a key with
the name that is expected to be of an array type can also be controlled by options
in the query language of the underlying document database. An example preserving
documents in the result that do not have a key address at all is shown in listing 2.8.
These documents will be returned by Mongo DB with a key address added which gets
a value of NULL for this key.

Listing 2.8: Customer Source from a Document DB preserving documents missing an
address.

SOURCE CustAddWithPosAndEmpty TYPE LIST QUERY ROLES

(_id: IDENTIFIER ,

adrPos: IDENTIFIER):

DATABASE custmongo NATIVE

db.customer.aggregate ([{ $unwind:

{ path : "$address",

includeArrayIndex : "adrPos",

preserveNullAndEmptyArrays: true } }])

END

Note that it is not required to flatten the arrays in documents from a document
DB. Sources may still contain keys of array types, but the Checks and Actions of the
DSL explained below do not provide specific array handling capabilities apart from an
option to pass an array value to a parameter expecting a LIST value. As discussed
above, we prefer to use the weakly typed approach in our DSL and leave the type-
specific operations to the source database systems which are already capable of dealing
with these specific types. Many of the potential array operations that might be needed
can be implemented with the UNNEST query option as explained above in combination
with the position information and our Checks language (see examples in section A). An
easier to use syntax for such operations might be possible if integrating them directly
into the DSL for convenience; this is left for future work in the current project.

Handling of the extended type system regarding sub-documents in document data-
bases is not an issue for the source declaration as they are processed as is and added to
the respective sources. Thus, their handling and access will be discussed below when
the check’s and action’s details are introduced.

2.2.4. Checks

Checks are the skeletons of data quality rules, they might be compared to func-
tions/methods from general purpose programming languages. A Check is basically

19

2. DSL

a method for data quality control. They always include RETURN statements, which
yield detected quality problems. Thus the overall result is a list of quality problems
that will later be evaluated by the Action.

Listing 2.9: DSL code for a NULL check.

CHECK NotNullCheck ON value:

RETURN value IS NULL;

END

Listing 2.9 shows one of the most basic Checks, a check for NULL values. The
second listing 2.11 compares two sets and checks whether they have the same amount
of entries. Lastly listing 2.12 shows a check for distribution matches. Going back to
the types of inaccurate data described in section 1.1, the three shown Checks cover
all introduced categories. The NullCheck stands for the most basic column property
analysis. Due to its nature the QuantityCheck covers structure analysis as well as
simple and complex data rule analysis depending on what parameters are used. Lastly
the DistributionCheck performs a value rule analysis.

To cover all these categories without creating a too complex language the expres-
siveness is three-tiered. First, there are boolean or mathematical expressions described
directly by the language in combination of variable usage, IF statements and FOR loops
as known from normal programming languages. Second, there is an SQL-like language
to process data sets using typical operations like projection, selection, join and group-
ing. Third, there are built-in methods to hide complexity, like a method to check
multidimensional cube data.

Accessing sources within the SQL-like statements in the checks works straightfor-
ward for relational database systems as sources. The name of a source can be used in
the FROM part to declare the source data to be checked. Individual columns within such
sources are identified by their attribute names ai which are results from the source
definition in other parts of the SQL-like statements. Attributes are assumed to be of
non-complex data types.

Similarly, key names ki are used to identify individual attributes of document objects
for sources originating in document database systems. For simple data types this is
similar to relational data sources. If a key ki is not present in any of the documents, this
document is excluded from consideration in this check. If key ki is of a document data
type itself, the classical dot notation may be used to access key-value pairs within such
a document. As documents may be nested hierarchically, path expressions separated
by dots may be used to navigate into the hierarchy. Note though, that non-existence
of any of the keys in such a path expression results in the document being excluded
from consideration in the current check. This is also true, if any key in any of the path
expressions within a single check is not existing. However, the NOT NULL Check has a
specific semantics where missing elements are considered to have a value of NULL.

Note though, that in most cases the value specification using dot notation will rather
be used in the Action part (see below), because the Checks themselves are often generic
and operate on role defined values or lists that are assigned in the Action part.

A Source list element is excluded from the current Check or Action, if a key is

20

2. DSL

actually present within a document, but does have a data type that does not match
the syntax used to access information for this key (e. g. the inside of an array cannot be
accessed as a sub-document and vice versa). Nevertheless, a whole array value can be
used by simply specifiying the array’s key name. The array elements are automatically
treated as anonymous LIST values in the Check in this case.

Even though array handling is not included in the DSL at this time, many important
functions can still be realized in the DSL by using the UNNEST feature of the docu-
ment database query language with position selection as explained in section 2.2.3. In
combination with a GROUP BY operation in the Check, the whole array can be recon-
structed in the Check as long as the DSL provides an aggregation function necessary to
assemble single array elements together into the array. This is illustrated in figure 2.10
below assuming that we have a String concatenation function and the array elements
are strings.

Listing 2.10: DSL code for reconstructing arrays by grouping and aggregation.

CHECK PhoneNumberListCheck

LIST phoneNos :=

SELECT _id , name , STRING_CONCAT(phone)

FROM CustomerPhoneProj

ORDER BY phonePos

GROUP BY _id , name;

...

Listing 2.11: DSL code for quantity checking.

CHECK QuantityCheck ON LIST list1 WITH LIST list2:

LIST cnt1 := SELECT COUNT (*) FROM list1;

LIST cnt2 := SELECT COUNT (*) FROM list2;

RETURN cnt1 != cnt2;

END

The idea behind Checks is - analogous to Sources - to cover technical details behind
a structure in order to provide a domain expert with tools to describe data quality
rules. The most basic Checks and some complex analysis will be predefined in the
rule catalog. The goal is to provide a substantial Check foundation for the user in
order to cover most needs. If the demand for individual Checks arises nonetheless,
user defined Checks may be composed as well. Due to the nature of the technicality
of these Checks, even though we will provide a language to compose them, this task
will most likely be assigned to technical users.

Listing 2.12: DSL code for distribution checking.

CHECK DistributionCheck ON LIST data(val)

WITH refDistribution(from , to , bin , perc):

LIST cnt := SELECT COUNT (*) FROM data;

LIST bindata := SELECT VAL2BIN(val , refDistribution) ROLE

↪→ bval

21

2. DSL

FROM data;

LIST bincnt := SELECT bval ROLE bval , COUNT (*) ROLE acnt

FROM bindata

GROUP BY bval;

LIST hist :=

SELECT bin , perc , NVL(acnt , 0) ROLE acnt

FROM bincnt RIGHT JOIN refDistribution ON bval = bin;

LIST score1 :=

SELECT (acnt - cnt * perc) * (acnt - cnt * perc) /

(cnt * perc) ROLE cell

FROM hist;

LIST score :=

SELECT SUM(cell) ROLE score FROM score1;

RETURN LIST score;

END

Since Checks are just archetypes of data quality rules, they provide parameters to
utilize them properly. There are two kind of parameters for Checks, the first parameter
provides the information which data has to be checked for data quality issues. The
second type of parameters are control parameters, they are used to aid in checking.
For example the QuantityCheck expects two parameters, the first being a list of values
(e.g. the contents of a customer table from a DWH), whose quantity should be checked
against the amount of values of the second parameter, another list of values (e.g. the
content of the original customer table). These parameters are divided via the Keywords
ON for ”data-to-be-checked”- and WITH for control-parameters. Whereas each Check
contains exactly one ON parameter, which only accepts a Source as input, the amount
of WITH parameter is not limited. Additionally, it is possible to also pass arbitrary
values via a WITH parameter.

Returns

The ultimate goal of checks is to detect data quality issues, in order to present these
issues the RETURN statement is used. There a few conventions of what will happen
when different types of data is returned. Due to the three kinds of DQ-issues defined
in section 2.2.7, different information is needed for each type. The first type needs a
score, an identifier record and optionally a value record. Type 2. errors need a score
and the offending value. The last kind only needs a score. With this information we
define the behavior of return values as follows:

Boolean: If a record with a single boolean value is returned and this boolean value
evaluates to true the current ON parameter is added to the return-value pool with a
score of 0 (score of 0 is the default value, which results in an error if no threshold is
given).

22

2. DSL

Double: If a record with a single double value is returned the current ON parameter
is added to the return-value pool with the double value as the score.

Record: If a record with more than one value is returned it is assumed that it
contains at least a score value and optional value and identifier fields. These fields will
be extracted and added to the return-value pool.

All returned values are bundled and will later be evaluated by the result in part of
the action.

2.2.5. Actions

With Sources and Checks defining the what should be checked and the what quality as-
pects should be checked for respectively, Actions are responsible for two things. Firstly,
they connect Sources and Checks resulting in data quality rules. Secondly, they deal
with the result and therefore conclude data quality rules. Actions were designed with
natural language in mind, so that a rule composed in the DSL reads as a sentence
which gets its point across without knowing the language itself. Following are a few
examples of Actions which cover different groups of inaccurate data.

Listing 2.13: DSL code for an example of a column property analysis.

ACTION NotNullCheckCustomerName:

EXECUTE NotNullCheck ON EACH Customer(name)

RESULT IN ERROR

END

Listing 2.13 shows an Action testing the customer names for null values. The NullCheck
is designed for single values, because there is no LIST keyword in front of the parameter
in the check. Thus the action automatically calls the check for each item of the data
source individually. This data quality rule falls under the category of column property
analysis.

Listing 2.14: DSL code for an example of a structural analysis.

ACTION DWHQuantityCheckCustomer:

EXECUTE QuantityCheck ON DWH_Customer WITH Customer

RESULT IN ERROR

END

Shown in listing 2.14 is an example for a check of the result of an ETL process, it
checks whether the amount of tuples in the DWH fits the original table. This data
quality rule falls under the category of structural analysis.

Listing 2.15: DSL code for an example of a value rule analysis

ACTION AgeDistributionCheckCustomer:

EXECUTE DistributionCheck ON CustomerWithAge(age)

WITH AgeHistogram

23

2. DSL

RESULT IN WARNING ABOVE 14.07 AND ERROR ABOVE 18.48

END

A more complex example is shown in listing 2.15. It goes back to the example in-
troduced in section 2.2.4 and uses the customers dates of birth and a reference age
distribution to compare the current customer ages with the saved reference distribu-
tion. The result is a score, which is evaluated by the RESULT IN part of the Action.
This data quality rule falls under the category of value rule analysis.

The notation to access parts of a source definition follows the same logic as described
for the Checks previously:

• Attributes of relational sources or key-value pairs of document sources with non-
complex data types are accessed by specifiying the Source name with the corre-
sponding attribute or key name in parenthesis.

• Key-value pairs in document sources refering to array values can be used as a
whole as anonymous list values by using the key’s name inside the Source name.

• Key-value pairs in nested documents within a document can be accessed by
using the Source name together with a path expression. Listing 2.16 shows how
a predefined pattern Check is applied to a nested value. Every element of the
path belongs to one level of nesting of documents describing the key’s name that
carries the sub-document as value. The example in listing 2.17 shows a NOT

↪→ NULL Check on the name key inside the street sub-document of the address

sub-document of the Source CustomerAddress.

Listing 2.16: Using an existing Check on a nested value.

ACTION CustAddressZipCheck:

EXECUTE PatternCheck

ON EACH CustomerAddress(address.zip: value)

WITH ZipPattern

RESULT IN ERROR

END

Listing 2.17: Navigating into a nested document originating from a Document DB.

ACTION NotNullCheckCustomerCountry:

EXECUTE NotNullCheck

ON EACH CustomerAddress(address.country: value)

RESULT IN ERROR

END

2.2.6. Roles

Within Check parameters, the mapping of attributes is important. For example, the
distributionCheck tests the distribution of values in a column called val. However, in

24

2. DSL

the source to be tested, the column might be named age. Thus, we need to map the
column age to val. We call this mapping the role mapping, because the column age
plays the role of the val part within the check.

It can happen that a role must be mapped to a different number of attributes for
different use cases. As an example, look at the following check that tests referential
integrity:

Listing 2.18: DSL code for referential integrity.

CHECK ReferentialIntegrityCheck ON LIST src(fk)

WITH LIST target(pk):

RETURN LIST

SELECT fk ROLE value

FROM src LEFT JOIN target ON fk = pk

WHERE pk IS NULL;

END

In this check, we have two roles: fk and pk, denoting the foreign key to be checked
and the referenced primary key. However, the check might be called to test foreign
key relationships with compound keys. Thus the roles fk and pk must be bound to
multiple attributes of the data source. See for example the following two data sources:

Listing 2.19: Source for work steps.

SOURCE Workstep TYPE LIST QUERY

ROLES (prjid: IDENTIFIER ,

stepid: IDENTIFIER):

DATABASE projects NATIVE

SELECT prjid , stepid , name , description

FROM workstep

END

Listing 2.20: Source for works in relation.

SOURCE Worksin TYPE LIST QUERY

ROLES (empid: IDENTIFIER ,

prjid: IDENTIFIER ,

stepid: IDENTIFIER):

DATABASE projects NATIVE

SELECT empid , prjid , stepid FROM works_in

END

In this case, a compound primary key is referenced by a compound foreign key. So
we call the check in the following way:

Listing 2.21: Source for works in relation.

ACTION WorksRefInt:

25

2. DSL

EXECUTE ReferentialIntegrityCheck

ON Worksin(prjid: FK , stepid: FK)

WITH Workstep(prjid: PK , stepid: PK)

RESULT IN ERROR

END

Thus, all roles must be bound to a list of attributes when the check is called. The
order does matter, binding the attributes of Worksin in an order not matching the
order of Workstep would result in wrong comparisons.

Roles can either be bound when the check is called or when a source is defined.
However, normally only the default role IDENTIFIER is bound for every source. Fur-
thermore, each attribute of a source is bound to role with the same name. Later
bindings override earlier bindings, see the following example:

Listing 2.22: Example for role bindings: Source Customer.

SOURCE Customer TYPE LIST QUERY ROLES (id: IDENTIFIER):

DATABASE cust NATIVE

SELECT id, name , firstname , dob , email ,

title , bonus

FROM customer

END

Listing 2.23: Example for role bindings: NameCheck.

CHECK NameCheck ON tab(name , title):

RETURN name IS NULL;

RETURN NOT (title IN {"Mr", "Mrs", "Ms"});

END

Listing 2.24: Example for role bindings: Action.

ACTION NameCheckCustomer:

EXECUTE NameCheck ON EACH Customer(name: name ,

firstname: name ,

title: title)

RESULT IN ERROR

END

In this example, first the Customer source is defined. It consists of records of size
four with the roles assigned to the columns as shown in table 2.1a.

When the check is called, the roles name and title are defined. As they were already
defined, the old definition is overwritten. This leads to the role assignment as shown
in table 2.1b.

It would also be possible to call the Check with the following code:

EXECUTE NameCheck ON Customer(name: name, firstname: name)

26

2. DSL

1 2 3 4
name firstname title id

IDENTIFIER

(a) Role assignment of the Source

1 2 3 4
firstname id

name name title IDENTIFIER

(b) Role assignment when calling the Check

1 2 3 4
firstname id

name title IDENTIFIER

(c) Wrong role assignment

Table 2.1.: Role example

However, leaving out the part name: name is not possible, as the redefiniton of a
role replaces the whole role. Thus calling

EXECUTE NameCheck ON EACH Customer(firstname: name)

would result in the assignment shown in table 2.1c, which is most likely incorrect.
In order to further simplify role assignments, a few special rules hold:

1. When a parameter of a check has no role declaration part, a single role is assumed
that has the same name as the parameter itself. Thus, the parameter declaration
value is implicitly interpreted as value(value).

2. When an actual parameter in the check call lists roles without assigning new
roles, the roles are assigned implicitly to the roles listed in the check body. In
this case, the number of required roles has to exactly match the number of given
roles.

3. When an actual parameter in the check does not list any roles, and the called
check only requires a single role for this parameter, the role is implicitly defined
to span all attributes of the actual parameter value.

A few examples illustrate these rules. First, look at the following check:

Listing 2.25: Example for role rule 1 (check).

CHECK NotNullCheck ON value:

RETURN value IS NULL;

END

27

2. DSL

Listing 2.26: Example for role rule 1 (action).

ACTION NotNullCheckCustomerName:

EXECUTE NotNullCheck ON EACH Customer(name)

RESULT IN ERROR

END

Here, first rule 1 interprets the check parameter value as a parameter with a single
role value. Furthermore, the call with parameter Customer(name) is extended due to
role 2 to Customer(name: value). Overall, the verbose form would be:

Listing 2.27: Expanded role example (check).

CHECK NotNullCheckVerbose ON value(value):

RETURN value IS NULL;

END

Listing 2.28: Expanded role example (action).

ACTION NotNullCheckCustomerNameVerbose:

EXECUTE NotNullCheckVerbose ON EACH Customer(name: value)

RESULT IN ERROR

END

Rule 3 is typically used when constant sources are used as actual parameters. For
example, when the email pattern is used as parameter value, a role that spans the only
existing attribute of the pattern is implicitly defined. This is shown in the following
example:

Listing 2.29: Example for parameter without role (check).

CHECK PatternCheck ON value WITH pat:

RETURN NOT MATCHES(value , pat);

END

Listing 2.30: Example for parameter without role (action).

ACTION PatternCheckCustomer:

EXECUTE PatternCheck

ON EACH Customer(email) WITH EmailPattern

RESULT IN ERROR

END

2.2.7. Return values

A return statement within a Check returns quality problems. However, it does not
finish the execution of the Check. So multiple return statements are possible and

28

2. DSL

useful. Or a return statement can be issued with a loop each time a quality problem
is detected.

For proper storage and evaluation of the found quality problems, a unified format
to identify problems is necessary. In order to define such a format, we need to classify
quality problem according to the unit of data that is related to the problem:

1. Problems that are related to individual data records. This includes also all
problems that are related to individual column values like NULL values or range
checks.

2. Problems that are related to values that occur in multiple records. For example,
a uniqueness test might identify a group of three records sharing the same value
in some columns that are supposed to be unique.

3. Problems that are related to a whole data source. An example is a skewed age
distribution in a customer table that cannot be pinned to individual records.

All problems are returned as data records containing a problem description. We re-
quire these records to define some standardized roles for unified analysis of the results.
The following roles are defined:

• Check The name of the Check that identified the problem

• Action The name of the Action that identified the problem

• Source The data source that contains the problem

• Identifier When the problem is of type 1, this identifies the offending record

• Value The value1 that identifies the problem (only for type 1 or type 2 problems)

• Score Severity of the problem, either 1 when there is no differentiation between
severities, or a number that will be larger for higher severity problems.

In order to avoid filling all these roles individually, the return statement contains
some default logic that helps to fill these roles:

• The role Check will always be set automatically by the innermost Check that
detected the quality problem. This means that an outer Check that returns
problems found be inner Checks will not modify the Check role.

• The role Source will also be set automatically matching the Source that was used
as an actual parameter for the ON parameter. This means that the Source name
must be tracked when a Check calls another Check.

1value in this context is a record, therefore it may contain multiple atomic values

29

2. DSL

• When the return statement includes a boolean expression, the expression is eval-
uated. In case it evaluates to TRUE a problem record is returned. Otherwise,
no record is returned from this statement. In case the ON parameter is a sin-
gle record, the following values are automatically defined: Identifier, Value and
Source (from the parameter). When the ON parameter is a SET parameter, only
the role Source is defined, as it is assumed that the Check has tested the source
as a whole.

• When the return statement includes a double expression, the logic is basically
identical to the previous case. However, the value of the expression is interpreted
as a score for the severity. In this case, the warning and error bounds of the
calling Action are used to assess whether the problem should be reported. Only
when the severity is above the warning threshold, a return value is generated.
Furthermore, the value is included as the Score role in the return record.

• When the return statement includes a set expression, each record of the result set
is required to define the roles Value and Score, if appropriate for the problem.
The role Identifier is set automatically when available. To define these roles,
the SELECT part of SQL expressions contains a special role syntax shown be-
low: SELECT <expr> ROLE score, <expr> ROLE values, ... FROM ... This
is basically the same as Alias names in standard SQL, with the exception that
multiple columns can be assigned to the same role:
SELECT <expr> ROLE values, <expr> ROLE values, ... FROM ...

2.3. DSL Description

2.3.1. Expressions

Expressions are like normal expressions in typical programming languages, except that
they always operate on records and not on simple values. However, they can behave
in the same way when the records only have a single attribute.

The basic building blocks for expressions are constants and variables. Constants are
denoted in the following syntax:

Listing 2.31: Syntax for a constant.

constval ::=

’[’ atomval (’,’ atomval)* ’]’ | atomval

atomval ::=

<stringconst > | <numericconst > |

TRUE | FALSE |

NULL

This means, that a constant is either a record in square brackets or a single constant
value. A single constant value is treated as a record with a single attribute, thus the
constants 13.5 and [13.5] are the same. String constants are enclosed with double

30

2. DSL

quotes ("). A double double quote escapes a double quote within a string. Numeric
constants use a single dot as a decimal delimiter. So the following expressions are all
valid constants:

Listing 2.32: Examples for constants.

[3, "Hello", TRUE , 4.8]

[TRUE ,NULL ,17]

FALSE

"Hello World"

"Hello ""World """

The next building blocks are values. Values can either be specified by identifiers (i.e.
variables). The variable’s value will be replaced for the identifier when the expression
is evaluated. Furthermore, a value can be created by calling a method with a list of
actual parameters, or by calling one of the predefined aggregate functions on some
expression. Thus we have the following syntax for values:

Listing 2.33: Syntax for values.

val ::=

constval | varval | callval | aggval

varval ::=

<name >

The provided built-in methods (callval and aggval) are described in the subsec-
tion 2.3.3. The value of a variable might either be a single records or a list of records.
When a list variable is encountered where a normal record is expected, the list length
is checked. When the length is exactly 1, then the list is implicitly converted to a
single record. When the length is either 0 or larger than 1, a runtime-error is thrown.
An array-like syntax with square brackets is provided to fetch a specific element from
a list of records, as shown in listing 2.34.

A value that is used within an expression might carry role information. This stems
from the list where the variable originated. A subrecord containing all the attributes
assigned to a role might be selected using the dot-notation shown in exprval. Further-
more, expression can contain sub-expression using parenthesis as usual to overwrite
the standard operator precedence.

Listing 2.34: Syntax for expression values.

exprval ::= (’(’ expr ’)’ | val)

(’[’ expr ’]’)? (’.’ <role >)?

In the next step, expression values can be compound to terms using binary operators,
comparison operators:

Listing 2.35: Syntax for expressions.

expr ::= expror | listexpr

31

2. DSL

expror ::= expror OR exprand | exprand

exprand ::= exprand AND exprrel | exprrel

exprrel ::= exprterm relop exprterm | exprterm

relop ::= (’<’ | ’<=’ | ’==’ | ’!=’ | ’>=’ | ’>’)

exprterm ::= exprterm (’+’ | ’-’) exprfactor | exprfactor

exprfactor ::= exprfactor (’*’ | ’/’) exprnot | exprnot

exprnot ::= NOT exprnot | exprun

exprun ::= exprval |

exprval IS NULL |

exprval IN listexpr |

’-’ exprval

As expressions always operate on records, semantics for the arithmetic, comparison
and boolean operators have to be defined. Arithmetic and comparison operators are
applied element-wise to the operands. Thus the operands must match in size. When
one operator has more than one element, and the other operand has only a single
element, this element is used as a counterpart for all elements of the other operand.
Some examples for this behavior:

Listing 2.36: Examples for operators.

[2,5] + [4,7] yields [6,12]

[2,3,4] + 1 yields [3,4,5]

[2,3,4] + [1] yields [3,4,5]

[2,3] + [4,5,6] yields a runtime error

Type conversion is done implicitly. The operators can only work on operands of com-
patible types. NULL values are treated to have no type; and any operation on NULL
values yields NULL again. The operators are evaluated according to the datatypes.
Arithmetic operators are applicable only to numeric values; comparison operators only
to strings and numeric values; plus is also applicable to strings meaning concatena-
tion; and for boolean operands, only equality or inequality is applicable. The following
examples show these semantics:

Listing 2.37: Examples for operators (2).

NULL + 17 yields NULL

"hallo" + 10 yields a runtime error

"hallo" + TRUE yields a runtime error

16 <= 17 yields TRUE

FALSE < 1 yields a runtime error

"hallo" < "zebra" yields TRUE

"180" < "19" yields TRUE (lexicographic)

TRUE = FALSE yields FALSE

"hallo" - 19 yields a runtime error

TRUE * FALSE yields a runtime error

32

2. DSL

The Boolean operators AND, OR and NOT behave differently. They reduce the left-
side and right-side records beforehand to single Boolean values. Here, only records
with only TRUE values are reduced to TRUE, all other records (including FALSE
or NULL value) reduce to FALSE. A record with non-Boolean components yields a
runtime error.

Again, some examples illustrate this behavior:

Listing 2.38: Examples for Boolean operators.

[TRUE ,FALSE] yields [FALSE]

[3,4] <= 4 yields [TRUE]

[3,4] <= 3 yields [FALSE]

[3,4] > 3 yields [FALSE]

[TRUE ,FALSE] AND [TRUE ,TRUE] yields [FALSE]

[FALSE ,FALSE] OR [TRUE ,TRUE] yields [TRUE]

[TRUE ,NULL] yields [FALSE]

NOT [1,0] yields a runtime error

NOT [TRUE ,FALSE] yields [TRUE]

The reduce logic is applied either when Boolean operators are applied, or when an
expression is evaluated in a context that requires a Boolean result value (i.e. in the
condition of an IF statement or in the WHERE part of a list expression). One conse-
quence of this logic is that the IS NULL operator will only yield TRUE if all attributes
of a record are NULL:

Listing 2.39: Examples for NULL test.

[4,NULL] IS NULL = [FALSE ,TRUE] ==> [FALSE]

[NULL ,NULL] IS NULL = [TRUE ,TRUE] ==> [TRUE]

2.3.2. List expressions

List expressions are expressions that yield a list of records. They are comparable to
relational SQL statements, although the special treatment of roles and list variables
allows these expressions to be parameterized in a very flexible way, including the
exchange of tables and column.

On the top layer, a list expression can either be a statement similar to SQL state-
ments, or a method returning a list, a variable name, or a constant list enclosed in
braces:

Listing 2.40: Syntax for a list expression.

lstexpr ::= lstsel | lstmethod | <var > | ’{’ constlst ’}’

List methods are described in subsection 2.3.3. A constant list is simply a list of
constant values:

33

2. DSL

Listing 2.41: Syntax for a constant list.

constlst ::= constval (’,’ constval)*

SELECT list expressions use a syntax that is close to SQL, however with some
important differences that are described in the following:

Listing 2.42: Syntax for SELECT list expressions.

lstsel ::=

SELECT lstselect

FROM lstfrom

(WHERE expr)?

(GROUP BY lstgroupby

(HAVING expr)?)?

(ORDER BY <role > (’,’ <role >)*

The select part is simply a list of expressions, where each expression can be assigned
to a role. Alternatively, a star can be used to select all available attributes from the
result.

Listing 2.43: Syntax for the select part.

lstselect ::=

expr (ROLE <role >)? (’,’ expr (ROLE <role >)?)* |

’*’

In the FROM part, a list of variables can be specified, with JOIN clauses defining
how to combine these sources. The variables must either refer to lists or (via pa-
rameters) to data sources. Instead of variables, also sub-list-expressions enclosed in
parenthesis (like subqueries in SQL) are allowed. All types of outer joins are supported,
however, we only support equi-joins.

Listing 2.44: Syntax for the from part.

lstfrom ::=

lstfromsrc (lstjoin lstfromsrc (ON <name > ’=’ <name >)?

↪→)*

lstfromsrc ::=

<varname > | ’(’ lstexpr ’)’

lstjoin ::=

(LEFT | RIGHT | FULL)? JOIN

In the GROUP BY part, a list of roles can be specified. The data in the attributes
assigned to these roles will be used to group the result. The roles are either existing
roles or those assigned in the SELECT part. This slightly differs from SQL, where you
cannot access alias names from the SELECT clause in the GROUP BY. On the con-
trary, we do not allow arbitrary expressions here, we only allow to use those expression
that where defined in the SELECT clause.

34

2. DSL

Listing 2.45: Syntax for the group by part.

lstgroupby ::=

<role > (’,’ <role >)*

When a GROUP BY is used, every role in the SELECT part must either be the
result of an aggregation function or must be listed in the GROUP BY clause.

Expressions in the SELECT, WHERE and HAVING part are always executed in
the context of a single record that is currently processed. This record might have roles.
Role names of these roles are also allowed as variable names in the expressions. As
they share a common name space, scoping semantics have to be defined. We apply a
simple rule: variable names always hide role names. Let’s look at an example:

Listing 2.46: List expression example.

minval := 10;

LIST res :=

SELECT value , identifier

FROM data

WHERE value > minval;

Assume that data is bound to a data source that provides the roles value, identifier
and minval. In this case, the reference to minval in the code references to the variable
minval defined directly before the list expression, and not to the role minval from data.
Now look at this code snippet:

Listing 2.47: List expression example 2.

minval := 10;

LIST res :=

SELECT *

FROM data JOIN (SELECT value ROLE minval FROM param)

WHERE value >= minval;

Due to our rule, the reference to minval in the WHERE clause still refers to the
variable minval instead of the role minval defined by the sub-list-expression. This
might be surprising, however the advantage are clear semantics. Compare with the
following example:

Listing 2.48: List expression example 3.

LIST sub := SELECT value ROLE minval FROM param;

minval := 10;

LIST res :=

SELECT *

FROM data JOIN sub

WHERE value >= minval;

35

2. DSL

In this case, again, the variable is substituted. However, from a user’s point of view,
it would be best not to use the same names for roles and variables. Furthermore,
variables are substituted immediately. Look at the following example:

Listing 2.49: List expression example 4.

minval := 10;

LIST res :=

SELECT *

FROM data JOIN sub

WHERE value >= minval;

minval := 20;

RETURN LIST SELECT * FROM res;

Here, minval is substituted with 10 immediatly in the second statement.

2.3.3. Built-in Methods

Currently, the following methods within expressions are built-in that return records:

Listing 2.50: Built-in methods in expressions.

callval ::=

ABS ’(’ expr ’)’ |

NVL ’(’ expr ’,’ expr ’)’ |

BINOM ’(’ expr ’,’ expr ’,’ expr ’)’ |

LENGTH ’(’ listexpr ’)’ |

MATCHES ’(’ expr ’,’ expr ’)’ |

VAL2BIN ’(’ expr ’,’ listexpr ’)’ |

DOB2AGE ’(’ expr ’)’

• ABS(x) returns the absolute value of the parameter x. If the parameter is a
record, the absolute value is calulated element-wise.

• NVL(x,y) replaces each NULL-element of the record x with the corresponding
value in the record y.

• BINOM(x,n,p) returns P (X ≤ x) for X ∼ Binom(n, p), where x is the first
parameter. Each parameter must be a single value (when a record is used, only
the first element is used).

• LENGTH(l) returns the number of elements of the list l.

• MATCHES(value, pattern) tries to match value against the regular expression
given in pattern. If there is a match, TRUE is returned, else FALSE.

• VAL2BIN(value, bins): Here, bins must be a histogram definition, i.e. a list
that contains the roles from, to, and bin. The value is checked agains each

36

2. DSL

element. If value is between from (inclusive) and to (excluive), then bin is
returned. If no matching bin is found, then NULL is returned. If the upper
bound to is NULL for a bin, then only the lower bound is tested. The resulting
record has a single role name.

• DOB2AGE(dob): Converts a birth-date dob into an age. The resulting role is
called age.

Aggregation methods are methods that are only valid in the context of the SELECT-
part of a list expression. Otherwise, their usage will produce a runtime error.

Listing 2.51: Built-in aggregation methods.

aggval ::=

MIN ’(’ expr ’)’ |

MAX ’(’ expr ’)’ |

SUM ’(’ expr ’)’ |

AVG ’(’ expr ’)’ |

COUNT ’(’ (’*’ | expr) ’)’

The logic of the methods should be clear from the name. The COUNT method counts
either the overall number of records when called as COUNT(*) or the number of times
the expression given as a parameter to the method is not NULL. MIN and MAX can
be used for numeric and string expressions, while SUM and AVG only work for numeric
expressions.

List methods are built-in methods that return a list. Currently, two methods are
implemented:

Listing 2.52: Built-in list methods.

lstmethod ::=

ARIMA ’(’ lstexpr ’,’ lstexpr ’)’ |

CUBESCORE ’(’ lstexpr ’,’ lstexpr ’)’

Details for these methods are given in chapter 3.

2.3.4. Sources

Sources are the interface to databases or other reference values the domain expert may
work with. This Section gives a detailed description of the structure of sources and
how they are syntactically made up as shown in listing 2.53.

Listing 2.53: Syntax for a Source

srcconstlst ::=

SOURCE <name > TYPE LIST CONST rolelist ’:’

constlst

END

37

2. DSL

srcconstval ::=

SOURCE <name > TYPE CONST rolelist ’:’

constval

END

srcquery ::=

SOURCE <name > TYPE LIST QUERY roledecl ’:’

DATABASE <dbname > NATIVE

<Query in the native language of the database >

END

rolelist ::= ROLES ’(’ <role > (’,’ <role >)* ’)’

roledecl ::= ROLES ’(’ roleasgn (’,’ roleasgn)* ’)’)? ’:’

roleasgn ::= <attr > ’:’ <role >

The given name identifies a Source, which later may be used as a parameter in Checks
to either aid in checking for data quality issues when used as a WITH parameter, or
it will be checked for problems when used as the ON parameter. The TYPE modifier
in the header is used to define two properties, firstly it determines if the Source is a
list of records or a single one, by optionally adding the keyword LIST. Secondly, it
states whether this Source contains constant values or a query, in order to differentiate
between Sources being a source data reference (QUERY) or constant values (CONST). An
optional part of the header is the assignment of roles to attributes. The most common
example is the declaration of primary keys via the identifier role. If a record entry does
not get a role assigned, the default role will be the name of the indicator (in relational
terms the column).

Listing 2.54: Example for a CONST Source representing an age distribution

SOURCE AgeHistogram TYPE LIST CONST ROLES (from , to , bin ,

↪→ perc):

[0, 18, "0-18", .05],

[18, 25, "18-25", .20],

[25, 35, "25-35", .15],

[35, 50, "35-50", .25],

[50, 65, "50-65", .19],

[65, 80, "65-80", .10],

[80, 95, "80-95", .05],

[95, NULL , "95-", .01]

END

Roles for constant sources are applied as shown in listing 2.54, the idea is to name
record entries sequentially, as they occur in the source, comma separated. Since con-
stant values do not have an indicator in their definition, the assignment of <attr> : <

↪→ role> can not be applied. In const sources, the role definition is mandatory, while
in query sources, it can be omitted, resulting in the original attribute names used as

38

2. DSL

roles. When a role assignment is present in a query source, still all original attribute
names are preserved as roles. This means you have to take care that there is no name
clash between newly assigned roles and attribute names.

Listing 2.55: Example for a QUERY Source representing an employee table

SOURCE Employee TYPE LIST QUERY ROLES (id: IDENTIFIER):

DATABASE hr NATIVE

SELECT name , dob , email , id FROM employee

END

2.3.5. Checks

Checks are methods for data quality monitoring. They range from simple null checks to
complex time series or multi-dimensional analysis. Basically, every Check is a function
that is called with some data to be checked and returns a set of quality problems found
within the data.

The basic syntax to define a check is as follows:

Listing 2.56: Syntax for a check.

check ::=

CHECK <name > ON formalparam (WITH formalparam (’,’

↪→ formalparam)+)?:

checkstmt*

END

The name identifies the check. The ON parameter must be present an references
the data to be checked. The WITH parameters are optional and can provide either
steering parameters or other (reference) data used to check the ON parameter. The
body of the check is simply a list of check statements that are introduced later.

A parameter is defined as follows:

Listing 2.57: Syntax for a formal parameter.

formalparam ::=

LIST? <name > rolelist?

The LIST keyword means that the check expects a list of records for this parameter.
The rolelist defines, which roles the check expects within records for this parameter.
In case that the role list is omitted, a single role with the parameter name is expected.
Thus, the parameter definition street is equivalent to street(street). For details,
see section 2.2.6.

The body of a check consists of a list of check statements. These can be a variable
assignment, a RETURN statement or a control structure (IF or FOR), or a call to
another check:

39

2. DSL

Listing 2.58: Syntax for a check statement.

checkstmt ::=

checkasgn |

checkreturn |

checkfor |

checkif |

checkcall

A variable assignment can either assign a single record variable or a list variable,
depending on the presence of the LIST keyword. The evaluation of list expressions
is sometimes deferred by the internal optimizer. The EVAL keyword can be used to
force immediate evaluation of the expression. Simple (record) expressions are always
evaluated immediately.

Listing 2.59: Syntax for a variable assignment.

checkasgn ::=

LIST <name > ’:=’ EVAL? lstexpr ’;’ |

<name > ’:=’ expr ’;’

A RETURN statement can either return all records from a list or a single record. The
single record might be composed in place using a syntax similar to the SELECT part of
list expressions. A RETURN statement does not end the execution of the check, it just
adds records to the list of returned quality problems. Thus it is possible to call RETURN
e.g. from inside a loop multiple times, emitting one quality problem each time.

Listing 2.60: Syntax to return quality problems.

checkreturn ::=

RETURN LIST lstexpr ’;’ |

RETURN checkretelem (’,’ checkretelem)* ’;’

checkretelem ::=

expr (ROLE <role >)?

The control structures are defined as follows:

Listing 2.61: Syntax for an IF statement.

checkif ::=

IF expr ’:’ checkstmt* (ELSE checkstmt*)? END

The IF statement evaluates the expression to a boolean to decide, whether the IF

or the ELSE part will be executed.

Listing 2.62: Syntax for a FOR statement.

checkfor ::=

FOR <name > ’:=’ expr TO expr ’:’ checkstmt* END |

FOR <name > IN lstexpr ’:’ checkstmt* END

40

2. DSL

The FOR loop comes in two flavors. The first variant is a numeric for loop the
evaluates two expression to retrieve a lower and upper bound. The loop variable <

↪→ name> is a numeric variable that runs from the lower bound to the upper bound
(inclusive) with step length 1. The second flavor evaluates a list expression and runs
the inner block for every element of the resulting list. Thus, <name> will be a record
from this list in each iteration.

Finally, we can call another check from within a check:

Listing 2.63: Syntax to call a check.

checkcall ::=

EXECUTE PERCENTAGE? <checkname > ON EACH? actualparam (

↪→ WITH actualparam (’,’ actualparam)*)? (IF expr)?

actualparam ::=

<name > roledecl? | constval

The check to be called is identified by its name. For the formal ON parameter and
every WITH parameter, an actual parameter must be passed. The actual parameter can
either be an identifier or a constant value. The identifier can either identify a variable
or a source. Variable names mask the names of sources, as the system first looks for
a matching variable, and if none is found, a matching source is looked up. If neither
a variable nor a source is found, a runtime error is thrown.

A formal parameter might either expect a list or a record. The actual parameter
passed must match this type with one exception: A list might be passed to a formal
record ON parameter using the EACH keyword. In this case, the check is called multiple
times, once for each element of the list. Any other mismatch will result in a runtime
exception

Each formal parameter has a list of expected roles. The actual parameter must
supply values for these roles. In order to match these roles, the original roles of the
actual parameter might be redefined using a roledecl. We can have multiple cases:

• When the actual parameter value is a constant record, the number of elements
of the record must match the number of roles of the formal parameter. The roles
are assigned element-wise in order. No explicit role mapping is defined in this
case.

• When the actual parameter value is either a source or a variable, it is expected
to carry role information. The original roles must then be mapped to the roles
of the formal parameter. There are multiple ways to specify this mapping. First,
a full roledecl in the format (orig1:formal1, orig2:formal2,...) can be
given. The order of the roles is not important in this case, and formal roles may
be omitted. In case of omission, a formal role is expected to exist in the original
roles, thus implicitly, a mapping (formal3:formal3) is assumed. An extreme
case here is the omission of the whole roledecl. The other option is a roledecl

in the form (orig1, orig2, ...). In this case, the number of original roles
must match the number of formal roles, and the mapping is defined by position.

41

2. DSL

Assume we have a formal parameter with the roles (from, to, bin, value). We
might have the following assignments:

• [3, 10, "Children", 0.2] is a constant value. The 3 will habe role from, 10
will have role to, etc.

• In the other cases the actual parameter is an identifier that must refer to a
source or a variable with roles. We have the following subcases:

– identifier: The roles (from, to, bin, value) are expected to exist in
the source and will be directly used.

– identifier(end: to, start: from): The role start is mapped to from,
and the role end is mapped to to. The roles (bin, value) are expected to
exist in the source and will be directly used.

– identifier(start, end, binning, pval): This is equivalent to the map-
ping identifier(start: from, end: to, binning: bin, pval: value

↪→).

When the actual parameter is passed to the check, only those roles that where
defined in the formal parameter are accessible from the check. Thus, any other role
that might have been present in the actual parameter is masked within the check.

When the roles for the ON parameter are mapped, an implicit mapping of the
IDENTIFIER is added, so that the identifier of any source is always accessible in case
it exists.

2.3.6. Actions

Actions apply Checks on Sources. This Sections gives a detailed explanation of how
actions may be defined. Listing 2.64 shows the syntactic structure of an action.

Listing 2.64: Generic Action Definition

action ::=

ACTION <name > ’:’

EXECUTE PERCENTAGE? <name >

ON EACH? actionparam

(WITH actionparam (’,’ actionparam)*)?

actionresult

END

The Action’s header contains a name, so that the Action later may be grouped
together with other Actions. An Action call consists of two parts, the Check call with
its entailing parameter definition and the result evaluation. The calling of the check
can look different depending on whether the ON parameter of that check expects a list
of records or just a single record. If just a single record is expected, either the keyword
PERCENTAGE or EACH have to be used, in order to decide whether the result should deal
with the passed arguments in a overall fashion - meaning that a certain percentage of

42

2. DSL

records has to fail the Check in order to trigger an output, or apply the Check for each
record individually.

Listing 2.65: Syntax for parameters used in Actions

actionparam ::=

<name > (’(’ actionrole (’,’ actionrole)? ’)’)?

actionrole ::= <role > | <name > : <role >

The role assignment of attributes of the parameter record is shown in listing 2.65.
It can occur in two ways, the first one being implicit role assignment. The Per-
sonCheck defines three roles for the ON parameter, if no role assignment is explic-
itly given in the Action, the roles will be assigned by order. The Action parame-
ter Customer(firstName, dob, email) for the PersonCheck would implicitly map
the roles as follows: Customer(firstName : name, dob : birthDate and email :

↪→ mail). The latter would be the second (explicit) type of role assignment. Assign-
ing roles this way also enables the user to assign more than one attribute to the same
rule.

Listing 2.66: Syntax for the evaluation of results

actionresult ::=

RESULT IN WARNING ABOVE <number > AND ERROR ABOVE <number >

| RESULT IN (ERROR|WARNING) (ABOVE <number >)?

The last part of an Action is the evaluation of the check outcome. As seen in listing
2.66, it begins with RESULT IN. Two kinds of result evaluation are possible, the first
one being a simple true or false decision. An example would look like this: RESULT

↪→ IN ERROR. This would mean that every record in the result set will be marked
as a data quality problem. The second kind of result evaluation deals with score
results, it enables the user to define score thresholds stating whether a score results
in an actual data quality problem (ERROR) or just a suggestion of an issue (WARNING
↪→). This could look like the following: RESULT IN WARNING ABOVE 2 AND ERROR

↪→ ABOVE 3. Since scores range from zero to infinity with higher numbers relating to
more severe problems, the keyword ABOVE is used to describe the warning and error
threshold.

Groups

In order to facilitate the execution of multiple rules, we introduced the grouping of
Actions. Members of a Group can be either an Action or another Group. This enables
the creation of a hierarchical structure representing the users Actions. Listing 2.67
shows the syntax for creating groups.

Listing 2.67: Syntax for grouping Actions and Groups

actiongroup ::= GROUP <name >:

43

2. DSL

((ACTION <name > | GROUP <name >) ’;’)+

END

2.4. Environment

After introducing all three parts of the DSL, we want to give a conclusive description
of what denotes a data quality rule. Like mentioned beforehand, our view of data
quality rules includes three kinds of information. Since an Action unites Sources and
Checks - and therefore includes them - and evaluates the result, it determines a data
quality rule from our and a domain experts point of view. Besides that, some metadata
related to the Action like execution and result histories are also part of a data quality
rule, due to the continuous monitoring process our DQ system exerts for. Finally, we
want to show two additional features of data quality rules we added to improve their
usability.

In order to enable an easy way to manage rules we define an active flag to data
quality rules. The composed rules will be executed by a scheduler (either one we
provide or an external one already present in the clients system), due to the fact that
these rules may run when either something relevant happened (e.g. a finished ETL
process) or when the database has some spare time for queries so that important tasks
are not interfered with. When a scheduler invokes a rule the active flag will be checked:
if it is set, the rule will be executed. With this feature a domain expert may control
which rules should be executed, without the need to interact with schedulers.

Another feature is the possibility to group rules together with added functionality
of grouping groups, therefore the user may structure their rules hierarchically. As
aforementioned, the rule execution will be triggered by a scheduler. In order to easily
trigger the execution of many rules, the user will be able to create groups of rules
which later will be initiated to execute by a scheduler. The active status specified
beforehand, may also be set or revoked for a whole group of rules therefore allowing
easy control over which rules are currently been evaluated.

2.5. Optimization

An important goal of our execution engine implementation is flexibility with respect
to location of execution of check logic. In principle, checks can be executed in the
quality engine itself or moved to the source databases by rewriting the source query.
On the one hand, the execution engine should be able to execute all logic on its own,
in cases where the target database does not have enough capabilities, either because
of resource constraints or because of a lack of features. On the other hand, if possible,
logic should be moved to the database for more efficient execution due to co-location
with the data.

To reach this goal, we distinguish two cases. First, we have checks for individual
records, that are called in a loop for each item of the source database. In this case,
we extract what we call safe conditions from the Check, i.e. conditions that need

44

2. DSL

to be fulfilled for the Check to find quality problems. These conditions are then
translated to filter conditions that are added to the native database query in the
source database. This step needs individual code for each query dialect and might fail,
if the target dialect does not support the relevant conditions. However, if it succeeds,
we avoid fetching large numbers of records that will not produce output for the quality
check anyway. As a very simple example, consider the NotNullCheckCustomerName

in listing 2.13. From the check, we extract the condition value IS NULL. The role
value is then back-substituted to name and the original query is modified to

SELECT * FROM (... original query ...) WHERE name IS NULL

For checks that work on LISTs, we follow a similar strategy. The first component is
deferred execution. This means, that list expressions are evaluated only symbolically,
i.e. variables are substituted with their current values. However, the list expression
itself is not evaluated until it is actually needed (i. e. because it is part of a return
statement or part of a condition that determines control flow). This leads to larger ex-
pressions that are build up part by part. The language still also has an EVAL statement
that forces immediate evaluation of a list expression, if needed.

Upon final execution, the whole expression is optimized quite similarly to normal
database optimizers. Our optimizer tries to push as much logic towards the data
sources, where the logic is added to the original database query (similar to the above
simple modification for NotNullCheckCustomerName). However, as soon as different
source databases are involved in an evaluation, no further pushing of operations to the
Sources is possible and the quality engine has to take over evaluation from this point
on. For example, a join of two sources from different databases has to be processed
internally in the data quality engine.

While the execution optimization has already provided promising results (cf. section
2.6), this part still remains an important issue for future improvements.

2.6. Evaluation

In this section, we look at the efficiency of our execution engine and especially at the
effectiveness of our optimization approaches as performance will be a critical feature
in e. g. large DWH quality use cases. For this, we use three different scenarios. First,
we look at a simple NOT NULL check (NN), which is an example of a single record
check. In this case, the optimizer modifies the source statement so that only critical
records (i. e. NULL values) are selected. Second, we look at a referential integrity
check (RI) which checks which records in one list do not reference valid records in
the other list. This contains more complex list expressions that are translated to
SQL by the optimizer in case of a relational data source. However, when the two
tables are not located in the same database, this approach is limited. As a final, more
complex, example of this list expression to SQL translation, we use a distribution check
(Dist) which checks to which degree records in a source comply with a given reference
distribution.

45

2. DSL

Errors 0% 1% 10%
Size 1% 10% 100% 1% 10% 100% 1% 10% 100%

NN
Std. 0.25 1.57 16.45 0.22 1.35 18.15 0.21 1.36 17.22
Optim 0.06 0.05 0.33 0.04 0.06 0.48 0.05 0.23 2.85
SQL 0.01 0.04 0.53 0.01 0.04 0.53 0.01 0.12 1.85

RI
Std. 0.66 5.44 106.38 0.56 5.62 142.90 0.67 11.98 458.45
Optim 0.15 0.79 16.38 0.12 0.84 14.11 0.11 1.28 16.74
SQL 0.11 0.76 11.24 0.10 0.87 10.75 0.12 1.37 11.01

Dist
Std. 0.82 6.40 74.01
Optim 1.07 7.80 73.04
SQL 1.23 7.97 70.21

Table 2.2.: Evaluation results (averages over 5 runs)

For evaluation, we use a person (approx. 5,000,000 records) and a plays relation
(approx. 8,400,000 records) from a movie database. For each scenario, we look at
different sizes of the data to check (1%, 10% and 100% of the original data). As the
runtime might be influenced by the number of errors in the first two scenarios, we also
use different numbers of errors (no errors, 1% errors, 10% errors). The distribution
check calculates an overall score for the target relation taking each record into account,
thus here we have no difference in effort related to error ratio. As benchmark for a
lower limit, we also list runtimes of SQL statements running directly on the database
that perform the same check. This is only possible as long as all data originates from a
single database and also sacrifices all other benefits of RADARas explained in section
2.1.

The results are summarized in table 2.2. For the NN check, we see that the optimized
version performs much better than the standard version. The standard version suffers
from a large number of calls to the check (for each person record) and is almost
independent of error ratio. The optimized version is a significant improvement that
is the better the smaller the error ratio (since fewer data has to be transferred to the
engine). Also, the scaling behavior looks good as the runtime is roughly proportional
to the data size. Runtimes for the optimized version are within the same order of
magnitude as the raw SQL statement (that does not include any DSL processing). As
the optimized version can only filter correct records, the runtime becomes larger with
larger error ratio.

For the RI check in the standard version the scaling is not as good, both in terms of
data size and error ratio. We assume that this is mainly due to our join implementation
in the engine, which is currently not very efficient and subject to future improvements.
However, the optimizer works quite well for this scenario again, reaching runtimes in
the same order of magnitude as the raw SQL benchmark and similar scaling behaviour.
Also, as expected, the runtime is almost agnostic of the error ratio in this case.

Finally, the Dist scenario shows a different picture. Here, the scaling works well,
however the optimized version does not yield any improvement. A comparison with

46

2. DSL

the raw SQL statement shows, that this statement already consumes nearly all of the
runtime so that no improvement is possible. A closer look revealed that this is due to
the stored procedure we used to translate the val2bin method to SQL. A hand-crafted
SQL version that avoids this procedure can be much faster, so we plan to modify our
SQL generation to output this result in the future.

Overall, we can conclude that the optimizer works very well in general and estab-
lishes runtimes close to raw SQL statements that implement the same logic. However,
as we cannot always count on it in cases when the underlying database has limited
query capabilities (NoSQL) or when data from multiple sources is combined, we will
also continue to improve the DSL interpreter. However, the efficiency improvements
here are more tied to improvements in small details (e. g. join implementation, imple-
mentation of the expression evaluation) and not to general architectural issues. Thus
the engine to execute RADARcan be considered sufficiently efficient.

47

3. Complex DQ Rules

The complex data quality rules in our system are different from simple rules in a few
ways. First, they are not composed by data quality managers, rather than mined from
past data in the later introduced data profiling step.

Figure 3.1.: Process flow of a complex data quality rule.

Figure 3.1 shows a generic process flow of a complex data quality rule. It starts
with historical data which may be divided into training and validations sets. These
sets are then processed by a given profiling method. Whereas the Model Selection
(for time series analysis e.g. ARIMA) is up to the data quality manager, the model
identification and parameter estimation are automated processes. Model identification
consists of identifying the concrete model of the given class of models, i.e. AR(1) in the
class of ARIMA models. Parameter estimation then determines the most appropriate
parameters for the given model. With the knowledge gained by data profiling a model
is created. This model is then used in a DQ-Check to test new data for anomalies
(probable quality issues), which are then output to the domain expert for inspection.

48

3. Complex DQ Rules

3.1. Parametrization

Like previously said, models for the source data will be calculated by data profiling
techniques. These models will then be used by Checks to test new data for quality
issues. Meaning the models will be WITH parameters of Checks. Depending on the
kind of Check, i.e. time series with ARIMA or multi-dimensional with a cube model,
these parameters can be quiet long lists. In order to not inflate Actions to the border
of illegibility, a sensible solution would be to wrap all parameters - belonging to a
model - in a Source. A counterargument would be, that the parameters of some model
might be human readable and understandable, so that a data quality manager might
be able to manually adapt them. Condensed in a Source and simply passed to a
Check via a variable name, a DQ manager would not be able to directly understand
the logic behind the used model. Therefore, a careful consideration of how the model
is introduced to the Check when designing more complex ones is needed. When it
comes to ARIMA models for time series checks, a Source as parameter set is on the
border of necessity, but we decided to use a Source nevertheless, since most models
will have a parameter amount of about five to ten, which would result in a not easy
comprehensible Action. Cube models definitely will need a source as a parameter set,
due to the large amount of different parameters.

3.2. Univariate Time Series

In this section, we describe the treatment of time series models as data quality models
for time series data. Most data is time-dependent and can thus be modeled as a time
series. For example, sales data could be summed up to a daily sales volume and thus
forms a univariate time series with one value per day. Other time intervals are possible
as well, for example weekly or monthly aggregates.

The basic idea is to use a time series model to calculate an expected value for each
item of the time series, using only the past values. The quality check can then compare
the actual value of the time series with the expected value in order to find unusual
values that might indicate quality problems. The magnitude of the difference between
expected and actual value is the basis for the outlier score that describes the severity
of the problem.

In the first iteration we only consider models of the ARIMA classes as models. This
class of models is quite powerful and flexible and still easy to handle. The models are
stochastic and thus can naturally model the variablility of the time series.

A time series in ARIMA types of models is described by the AR and MA part which
stand for Auto Regressive and Moving Average respectively. The AR component is a
linear combination of the previous values of the time series and a random component.
The φp are the factors for the previous values and Zt is the unpredictable error term:

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + Zt (3.1)

The MA component is a linear combination of the previous random components Zt:

Yt = θ1Zt−1 + θ2Zt−2 + · · ·+ θqZt−q + Zt (3.2)

49

3. Complex DQ Rules

Combining both parts yields the following model:

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + θ1Zt−1 + θ2Zt−2 + · · ·+ θqZt−q + Zt (3.3)

Each Zt is modeled using a normal distribution with mean 0 and variance σ2.
The idea is to calculate an estimated value Ŷt and compare that to the actual value

Yt. To calculate the estimated value (also called forecast value), the following formulae
are used. For an AR time series, we simply set the random component to zero:

Ŷt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p (3.4)

The residual Rt is the difference between the expected and the acual value:

Rt = Yt − Ŷt (3.5)

For the forecasting of the MR part, the past residuals are used to estimate the past
random components. This means, that Zt−1 is estimated as Rt−1. The current random
value Zt is estimated again as zero. This yields the following formula:

Ŷt = θ1Rt−1 + θ2Rt−2 + · · ·+ θqRt−q (3.6)

This definition is recursive, as the previous forecasts are needed to calculate the pre-
vious residuals, etc. Thus we need to store the old residuals, or recompute all of them
and use these values when checking the current value of the time series.

The score for the value at time t is the absolute value of the residual normalized
with the standard deviation of the random component:

St =
|Ŷt − Yt|

σ
(3.7)

3.2.1. Implementation

In this project we use the software package R1 for more complex computations like the
calculation and estimation of ARIMA models. R’s functionality is provided in pack-
ages, for our time series approach we use the forecast package, it provides functions
for model identification, parameter estimation and eventually forecasting values. As
mentioned earlier, we use this forecast to estimate how probable the corresponding
time series value is. The forecast is used to calculate a residual, which then is divided
by the standard deviation to yield a score, as shown in equation 3.7.

Listing 3.1: R code for generating a time series and computating a model.

library(forecast)

Generates a time series with 100 data points

of order 1,1,1 with an ar part of .75 and a ma part of

↪→ .25

1see https://www.r-project.org/

50

https://www.r-project.org/

3. Complex DQ Rules

timeseries <- arima.sim(list(order = c(1,1,1),

ar = 0.75, ma = 0.25), n =

↪→ 100)

auto.arima is used for model identification

and parameter estimation

model <- auto.arima(timeseries)

Listing 3.1 shows R code which generates an artificial time series and then computes
a fitting model for the generated time series. Following examples will use the generated
time series listed in Listing 3.2 and shown in Figure 3.2. It was generated with the
parameters seen in Listing 3.1, therefore it roughly follows an order of (1, 1, 1) with
an AR part of .75 and an MA of .25.

0 20 40 60 80 100

0
10

20
30

40
50

60

Index

ts

Figure 3.2.: Plot of the R-ARIMA Check with the sample time series.

Listing 3.2: Source representing an artifical generated time series.

SOURCE TimeSeries TYPE LIST CONST ROLES (value):

0.000000 , 2.623743 , 3.789620 , 4.439828 , 4.249843 ,

3.916899 , 3.478510 , 2.500894 , 3.612794 , 4.204696 ,

5.669945 , 8.704310 , 12.332818 , 15.468202 , 17.404085 ,

18.660676 , 19.404775 , 20.893627 , 22.064165 , 24.594094 ,

26.827290 , 30.035758 , 31.584607 , 30.519828 , 29.183136 ,

29.130115 , 28.821930 , 27.364103 , 26.926484 , 27.908534 ,

29.892975 , 31.531580 , 32.241380 , 33.664232 , 37.625139 ,

51

3. Complex DQ Rules

40.154500 , 40.743571 , 41.225403 , 42.118486 , 43.636868 ,

44.210719 , 45.386753 , 47.774890 , 49.331057 , 49.827593 ,

50.363815 , 50.659891 , 48.341681 , 44.755109 , 39.909498 ,

36.084458 , 33.418436 , 32.143091 , 30.957857 , 28.846263 ,

27.951211 , 28.773923 , 29.559525 , 31.267978 , 34.040998 ,

36.595921 , 40.322161 , 43.725928 , 47.048210 , 49.890612 ,

52.229083 , 54.804125 , 57.155170 , 58.411904 , 58.458849 ,

58.465982 , 58.300552 , 57.046101 , 54.832691 , 51.161610 ,

47.904541 , 45.992418 , 43.061357 , 38.254406 , 34.280723 ,

30.891375 , 28.642376 , 27.827763 , 27.196900 , 26.006698 ,

23.642374 , 22.697840 , 22.314777 , 22.627406 , 24.886459 ,

28.285309 , 30.345886 , 33.584469 , 37.396241 , 40.851070 ,

45.267623 , 48.960385 , 50.582479 , 52.114948 , 52.146251 ,

52.407847

END

When applied to a user selected time series, the auto.arima function is used to
identify the model and estimate the corresponding parameters. While the object re-
turned from the function contains many (17) fields, only a few are of interest to us.
In order to apply the derived model to future time series data, we need to extract
the the following attributes: order (arma), coefficients (coef) and variance (sigma2).
With this information we can recreate the model, which will then be applied to the
given time series. Listing 3.3 shows sample values of an ARIMA model of order 1,1,1.
The arma attribute contains seven values which indicate the number of factors of the
model as follows: AR, MA, seasonal AR, seasonal MA, period and number of seasonal
and non-seasonal differences.

Listing 3.3: Sample values of a ARIMA time series model.

model$sigma2

[1] 1.027177

model$arma

[1] 1 1 0 0 1 1 0

print(model$coef)

ar1 ma1

0.8019811 0.3693047

The information needed to recreate an ARIMA model in R will be saved as a Source
as depicted in Listing 3.4. In order to be able to save all the information necessary for
a model in one Source, we define an array like structure through roles of the Source.
The first value represents a key, the second the index and the third the actual value.
With this in mind the data in the Source from Listing 3.4 could be seen as two arrays
and a singular integer value: coef = {0.8019811, 0.3693047}, arma = {1, 1, 0,

↪→ 0, 1, 1, 0}, var = 1.027177.

Listing 3.4: Source representing the ARIMA Parameters as shown in Listing 3.3.

52

3. Complex DQ Rules

SOURCE SampleArimaModel TYPE LIST CONST

ROLES (key , index , value):

["coef", 1, 0.8019811] ,

["coef", 2, 0.3693047] ,

["var", 1, 1.027177] ,

["arma", 1, 1],

["arma", 2, 1],

["arma", 3, 0],

["arma", 4, 0],

["arma", 5, 1],

["arma", 6, 1],

["arma", 7, 0]

END

R-code to recreate the model is shown in Listing 3.5. Since the model used in R’s
arima functions consists of a list of lists, first a list has to be declared. The variance
(sigma2) and order (arma) can simply be added to the list. For the coefficient vector,
firstly the values have to be defined and then named. The named vector is lastly added
to the list, completing the model.

Listing 3.5: Recreating an ARIMA model in R.

model <- list()

model$sigma2 <- 1.027177

model$arma <- c(1,1,0,0,1,1,0)

coef <- c(0.8019811 , 0.3693047)

names(coef) <- c(’ar1 ’, ’ma1 ’)

model$coef <- coef

With a Source containing a Model and a Source containing the corresponding time
series, a Check is needed to bring these two parts together. The Check is shown in
Listing 3.6, since the calculation is covered by R, only the invocation of the arima()
build-in function is necessary. The task of this build-in function is to recreate the
given ARIMA model in R and then call R’s functions in order to determine the scores,
which are then returned for evaluation during the execution of the Action.

Listing 3.6: DSL Check code for the ARIMA Check.

CHECK ArimaCheck ON LIST ts(time , value)

WITH LIST model(key , index , value):

RETURN LIST ARIMA(ts , model);

END

The main functionality of the R implementation is shown in Listing 3.7, where the
function arimacheck is defined. It returns the scores of all data points, while also
generating a plot showing the original time series (black line), the predicted time
series (blue line), the threshold violations (red lines), as well as the scores (points)

53

3. Complex DQ Rules

with the threshold (black horizontal line) at the bottom. Sample plots are depicted in
Figure 3.3 and 3.4, seen is the arima check applied to the introduced time series, once
without anomalies and once with two injected outliers where the value was increased
by 25 percent at index #51 and #83. In ARIMA models a predicted value depends
on its predecessor, therefore an outlier in the time series, if not adjusted, will cause
a few following predictions to be inaccurate, which can be seen at the zigzag pattern
of the blue prediction line after an anomaly occurs. Therefore, the score of data
points following the outlier most likely violates the threshold also. This can be seen in
Figure 3.4, where the artificially introduced anomalies are found with three threshold
violations each following the actual outlier. In order to not flood the analyst with too
many error reports, side by side anomalies will be bundled together.

Listing 3.7: R-Code for the ARIMA Check.

arimacheck <- function(ts, model , threshold) {

newModel <- Arima(ts, model = model)

predictedts <- ts - newModel$residuals

scores <- abs(newModel$residuals) / sqrt(model$sigma2)

#plot

plot(ts , lwd=2, type=’l’)

lines(predictedts , col = ’blue ’, lwd = 2)

points(scores)

abline (0,0)

abline(threshold ,0)

for(i in 1: length(ts)) {

if(scores[i] > threshold) {

abline(v=i, col = ’red ’)

}

}

return (scores)

}

An Action, using the previous example Sources, can be seen in Listing 3.8. The
time series Source used in this example is the one shown in Listing 3.2 with the two
introduced outlier mentioned earlier at index #51 and #83. With a threshold of 3 the
following error reports would be produced from the rule execution:

• Error at {51, 52, 53, 54}2

• Error at {83, 84, 85, 86}2

Listing 3.8: Action representing a sample ARIMA Check execution.

2The Report could also show the timestamps of the errors found, but in this example the time series
is generated artificially and therefore the indeces are the timestamps.

54

3. Complex DQ Rules

Time

ts

0 20 40 60 80 100

0
10

20
30

40
50

60

Figure 3.3.: Plot of the R-ARIMA Check with the sample time series.

Time

ts

0 20 40 60 80 100

0
10

20
30

40
50

60

Figure 3.4.: Plot of the R-ARIMA Check with the sample time series and two intro-
duced outlier (25% increase at 51 and 83).

55

3. Complex DQ Rules

ACTION SampleArima:

EXECUTE ArimaCheck ON SampleTimeSeriesOutlier

WITH SampleArimaModel

RESULT IN ERROR ABOVE 3

END

3.2.2. Seasonal time series

Using the described approach, we can also describe and check seasonal time series using
SARIMA models. A time series in SARIMA models (see e. g. [20]) is described by
multiple components. They are driven by a series of random components et with zero
mean and equal variance σ2. The AR component is a linear combination of the previous
values of the time series and the current random component. The MA component is a
moving average of the previous random components. The “I” stands for “Integrated”
meaning that the differenced series is looked at. The seasonal part references back to
the values in the previous season, for example S = 7 for the same day in the previous
week. The seasonal part can also be described using AR, MA or I components. Overall,
the order of an SARIMA model is described by (p, d, q) × (P,D,Q)S , where the first
triple defines the order of the AR, I, and MA components in the non-seasonal part,
and the second triple defines these orders for the seasonal component.

Week

S
al

es
 v

ol
um

e

2 4 6 8

0
5

10
15

20

● ● ● ● ● ● ●

● ●

●

● ●
●

●
●

●

● ●

●

●

● ●

● ●
●

●

●

●

●

●
●

●

●

● ●
●

●

● ●

●

●
●

●

●
●

●

●
●

●
● ● ●

●
●

● ●

1 2 3 4 5 6 7 8 9

Figure 3.5.: Sales time series with daily ARIMA scores.

For example, the model we use for the time series in fig. 3.5 is an (1, 0, 0)× (2, 1, 0)7

56

3. Complex DQ Rules

Listing 3.9: Source for time series sales data.

SOURCE TimeSeriesSales TYPE LIST QUERY

ROLES(time_id: IDENTIFIER):

DATABASE ts NATIVE

SELECT ’’ || week || ’-’ || day as time_id ,

sales_volume

FROM time_series_sales

END

model, which means that we have an AR model that only uses the last value and
an S = 7 weekly seasonal component that uses 2 AR components. Furthermore, the
seasonal model is differentiated once as D = 1. We have no MA parts here. The
equation for this model series is:

(1− ar1B)(1− sar1B
7 − sar2B

14)(1−B7)yt = et (3.8)

Here, Bl is the backshift operator, meaning Blyt = yt−l. The parameter values are
ar1 = 0.6301, sar1 = −0.5609, and sar2 = −0.1503. The variance of et is estimated
to σ2 = 2.12. Using this model we can calculate a forecast ŷt by resolving (3.8) for yt
and setting et := 0. The forecast interval is calculated using the variance of et.

Our check now computes ŷt for every time step t using the previous values. The
absolute difference between the forecast and the actual value, normalized with σ,
defines the score for each point:

scoret =
|yt − ŷt|

σ

For the forecast calculation of later points, we replace outliers where the score is larger
than 2 with the forecasted value to avoid that a single error influences the forthcoming
forecasts and produces consecutive errors.

As the check code uses a built-in method arima that internally calls a suitable
standard function of the R statistics package, the code is rather simple, cf. listing 3.6.
Data to be checked is specified using a relational data source, see listing 3.9.

The model itself is described in RADAR using a constant Source, that is not com-
puted by executing an external query, but rather uses a fixed structure throughout.
This constant Source lists the order of the model, the coefficients and the variance
of et. An example matching the above model is shown in listing 3.10. Since it is
very difficult to find this model manually, especially for the DQ manager, we will use
a profiling component described in section 4 to automatically suggest a model from
analyzing historical data.

Finally, an action puts it all together. It calls the ARIMA check using the model and
the time series data source, and assigns the appropriate roles, as shown in listing 3.11.

Continuing the example figure 3.5, we see that the sales volume data has a weekly
seasonal pattern. The circles at the bottom denote the computed scores; the upper

57

3. Complex DQ Rules

Listing 3.10: Source for sales data ARIMA model.

SOURCE ArimaModelSales TYPE LIST CONST

ROLES (key , index , value):

["coef", 1, 0.5803] ,

["coef", 2, -0.4666],

["coef", 3, -0.1823],

["var", 1, 2.374] ,

["arma", 1, 1],

["arma", 2, 0],

["arma", 3, 2],

["arma", 4, 0],

["arma", 5, 7],

["arma", 6, 0],

["arma", 7, 1],

[" coefnames", 1, "ar1"],

[" coefnames", 2, "sar1"],

[" coefnames", 3, "sar2"]

END

Listing 3.11: Action for sales time series data quality rule.

ACTION ArimaCheckSales:

EXECUTE ArimaCheck

ON TimeSeriesSales(time_id: time , sales_volume: value)

WITH ArimaModelSales

RESULT IN WARNING ABOVE 2.5 AND ERROR ABOVE 3.5

END

58

3. Complex DQ Rules

horizontal line indicates the error threshold of 3, the lower horizontal line indicates the
warning threshold of 2. Note that we don’t have scores for the first week as we need
historic data for forecasting. At time 3-2 (second day of week 3), there is an error,
the value of the sales volume is too small for a non-weekend day. Due to the seasonal
model, this error can be detected. On the other hand, at time 6-2 there is a warning as
the value is rather low but not as exceptional compared to 3-2. Yet, the data steward
may know that these values are due to some shops having been closed for a public
holiday. On the other hand, it might also be due to an error in data provisioning and
in that case the error and the warning should be observed. Thus, days 3-2 and 6-2 will
be reported as suspicious. It would be impossible to detect both types of such errors
or warnings without using a seasonal time series, as both values are within the normal
range of values.

Similar to these time series checks, we have implemented multidimensional quality
checks. Syntactically, those are pretty similar to the time series checks, with the dif-
ference, that the Action provides the Check with information as to which attributes
contain the cube metric/fact value, cube dimensions and cube time dimension, re-
spectively. The Check itself is rather simple, basically invoking a built-in function
computing a score for the passed data cube by comparing it against a desired cube
model. This model is specified as a constant data source similar to the one presented
in listing 3.10 for time series, just with different parameters. Based on the computed
score the Action can issue warnings or errors, as before.

Since the constant data sources needed to provide the models for the advanced
quality checks tend to be lengthy and difficult to discover, it is important to assist the
DQ manager in specifying such sources. This is done by our profiling component as
will be explained below.

3.3. Multidimensional Data

In this section, we describe our approach to quality checks for multidimensional data.
By multidimensional data, we mean Cube data, i.e. facts that are described by di-
mensional attributes, typically including a time dimension, and metrics values. Metric
values can be aggregated over one or more dimensions. Dimension values might be
grouped to form hierarchies.

As multidimensional data is ubiquitous in Data Warehouse environments, we pay
special attention to this kind of data. Treating multidimensional data as normal data
using the previously described checks is possible, however it might miss to find more
subtile quality problems associated with specific dimensions.

As an example, assume sales data grouped by the dimensions like product, customer,
region, sales agent, promotion, etc. Furthermore assume that some error caused that
an old definition of the product catalog has been used during data load. This means
that all data from this load is assigned to wrong dimensional values for the product
dimension, while all other dimensions are properly encoded. Thus the overall sum of
the revenue is correct, however specific aggregations that include the product dimen-
sion will show wrong values. Thus we need quality checks that pay special attention

59

3. Complex DQ Rules

to individual aggregate values. The basic idea used here is described in [17] in the
context of network data.

This section is organized as follows. First, we describe the DSL perspective and
extensions to describe multidimensional data and multidimensional checks. In the
next subsection, we describe the profiling process that generates multidimensional
checks. Finally, we describe the method used to run the checks and to minimize the
number of generated error messages.

3.3.1. DSL extensions

We assume to have the cube data in a relational form, i.e. as a list of records. A multi-
dimensional source is described using standard DSL syntax. The specific dimensional
structure is described using appropriate roles:

Listing 3.12: DSL code for a sales cube Source.

SOURCE SalesCube TYPE LIST QUERY:

DATABASE dwh NATIVE

SELECT dd.day , dd.month ,

c.product_id , c.product_group_id ,

c.customer_id , c.region_id ,

c.sales_volume

FROM sales_cube c

JOIN date_dim dd ON dd.day_id = c.day_id

END

A cube check is complex, thus we hide it within a build-in function:

Listing 3.13: DSL code for a sales cube Source.

CHECK CubeCheck ON LIST cube(time , dim , metric)

WITH LIST cubemodel:

RETURN LIST CUBESCORE(cube , cubemodel);

END

The cube checks needs to know the metadata for the source, i.e. the dimensions,
metrics and the time dimension. We use the role concept of the DSL to define this
metadata. An Action will look as follows:

Listing 3.14: DSL code for a sales cube check Action.

ACTION SalesCubeCheckDay:

EXECUTE CubeCheck ON SalesCube(day: time ,

product_id: dim ,

product_group_id: dim ,

customer_id: dim ,

region_id: dim ,

sales_volume: metric)

60

3. Complex DQ Rules

WITH SalesCubeModelDay

RESULT IN WARNING ABOVE 2 AND ERROR ABOVE 3

END

The cube model is stored as a constant (alternative: as a database table). It looks
as follows. For each cell where a model exists, the cell is identified by the dimensional
attributes (this list must match the dimensional attributes of the cube). For each cell,
we define the model as a normal distribution using a mean µ and a standard deviation
σ =
√
σ2:

Listing 3.15: DSL code for a sales cube model source.

SOURCE SalesCubeModelDay TYPE LIST CONST

ROLES (dim , dim , dim , dim , mean , sd):

[17, 28, 13, 104, 100, 30],

[26, 28, NULL , NULL , 17000, 400],

[NULL , NULL , NULL , NULL , 100000 , 3000]

END

In this examples, three models for difference cube cells are defined. The first line
is a very specific model for a base cell of the cube. The second line is a model that
applies to product 26 within group 28. The third line defines that the overall cube
sum per time unit has a mean of 100000 with a variance of 3000.

For other time units, we need different models and a new action:

Listing 3.16: DSL code for a sales cube check Action.

ACTION SalesCubeCheckMonth:

EXECUTE CubeCheck ON SalesCube(month: time ,

product_id: dim ,

product_group_id: dim ,

customer_id: dim ,

region_id: dim ,

sales_volume: metric)

WITH SalesCubeModelMonth

RESULT IN WARNING ABOVE 2 AND ERROR ABOVE 3

END

Listing 3.17: DSL code for a sales cube model source.

SOURCE SalesCubeModelMonth TYPE LIST CONST

ROLES (dim , dim , dim , dim , mean , sd):

[10, 89, NULL , 102, 3000, 30],

[23, 42, NULL , NULL , 170000 , 400],

[NULL , NULL , NULL , NULL , 3000000 , 3000]

END

61

3. Complex DQ Rules

3.3.2. Profiling

The profiling for multidimensional data builds a model using historic cube data. For
the prototype, we assume that the historic data is error free. Later, it will be useful to
identify outliers in the historic data prior to model building in order to improve model
quality.

The main challenge for this profiling module is to select a useful subset of cells. It is
not feasible to build a model for every cell as there are too many cells (exponentially
many in the number of dimensions). Furthermore, there are cells with very few data.
Building a model using only few data records will generate spurious models and thus
far too many false positives during later operation.

Thus our criteria for selecting cells will be the amount of data available in the cells.
We measure the amount using the number of records in the fact table, no matter how
large the metric value in every record is.

We build the iceberg cube, i.e. the cube consisting of all cells that fulfill a certain
threshold condition. The threshold is given as a parameter T . We only build a model
for cells where more than T data records are available. For each of these cells, we
group the data per time unit and then calculate the estimated mean and standard
deviation.

For efficient computation of the iceberg cube, we use the FTL algorithm described
in [19].

3.3.3. Running the check

Running the check essentially means to compute all cube cells for which a model is
available and then to calculate the Z-score for every time step of every cube cell. The
Z-score is returned. The action can evaluate the score against the warning and error
boundaries.

Alter Text:

Listing 3.18: Syntax for list methods.

lstmethod ::=

ARIMA ’(’ lstexpr ’,’ lstexpr ’)’ |

CUBESCORE ’(’ lstexpr ’,’ lstexpr ’)’

ARIMA implements an ARIMA time series check and returns one score for each
time step of the series. The first parameter of ARIMA is the time series, it is expected
to be a list with two roles: TIME and VALUE. The TIME role is used for identification
purpose only and not further interpreted. The records are expected to be ordered by
time and to have no missing values. The second parameter is the ARIMA model. Each
record in this list must have three roles: KEY, INDEX, and VALUE. An example is
given as follows:

Listing 3.19: Example for the model parameter.

SOURCE ArimaModelSales TYPE LIST CONST

62

3. Complex DQ Rules

ROLES (key , index , value):

["coef", 1, 0.5803] ,

["coef", 2, -0.4666],

["coef", 3, -0.1823],

["var", 1, 2.374] ,

["arma", 1, 1],

["arma", 2, 0],

["arma", 3, 2],

["arma", 4, 0],

["arma", 5, 7],

["arma", 6, 0],

["arma", 7, 1],

[" coefnames", 1, "ar1"],

[" coefnames", 2, "sar1"],

[" coefnames", 3, "sar2"]

END

The return value of the call is a list containing a record for each time step with the
roles IDENTIFIER and SCORE. This list can directly be returned from a check.

63

4. Profiling

4.1. Introduction

Data profiling is used to gain information about existing data, the idea is to get a
thorough understanding of what the data looks like. This projects aim is to use
data profiling techniques to generate suggestions for data quality rules, meaning rules
describing data as it should be. The profiling component generates rules using the
RADAR DSL. This chapter will give a brief overview over the concepts and design
decisions of the data profiling component.

In order to ensure data quality, a huge set of rules is necessary to regularly test
as much quality aspects and parts of the data set as possible. When writing rules,
two challenges arise. First, the effort to write huge numbers is high and thus a good
coverage of the data with rules might not be achieved. Second, finding good parame-
ters and thresholds for complex rule types by hand is extremely difficult. This holds
true especially for rules that define a statistical model for the data and check the
conformance of the current data with the model (see chapter 3). To simplify these
tasks, we developed a profiling component that examines existing data and suggests
rules and parameters for these rules. The data quality steward can then inspect these
suggestions and decide, using additional business knowledge, which candidates should
be made active. Manual inspection is important, as profiling tools can only detect
rules that are currently fulfilled within the data, without knowing whether they hold
in general.

We follow a modular approach and provide various profiling modules. Each module
is focused on one type of profiling and outputs specific types of rules. As a simple
example, the NOT NULL profiling module examines a column of data and counts the
current number of NULL and NOT NULL entries in this column. Based on these
statistics, the module suggests either a hard NOT NULL rule or a soft NOT NULL
rule, stating that not more than a certain fraction of the values may be NULL, or both.
For the soft rule, we need to find reasonable parameter values. Another example is a
profiling module for a time series rule, that has to estimate the parameters of the time
series model.

The UI to steer the profiling is two-fold. First, we have a basic profiling UI that tar-
gets the generation of huge amounts of basic rules. This UI shows the data sources and
their attributes in a grid-like view and automatically suggests basic profiling modules
that match the data type of the attributes, i. e. numeric range profiling for numeric
columns, NULL profiling for every column, etc. The goal is to quickly generate rules to
check the individual column values with a good coverage. The profiling functionality
here is similar to commercial data profiling tools in principle, but with the extension,

64

4. Profiling

Listing 4.1: ”Profiling output”

The following rule holds with 0 error(s) and 0 warning(s):

EXECUTE NotNullCheckProb

ON budget(BUDGET) WITH 0.03

RESULT IN WARNING ABOVE 0.95 AND ERROR ABOVE 0.99

The following rule holds with 1 error(s) and 0 warning(s):

EXECUTE NotNullCheck

ON EACH budget(BUDGET)

RESULT IN ERROR

Errors: [movie = 48417]

that quality rule candidates are automatically generated based on the profiling re-
sults. The other UI, called advanced profiling, targets more complicated rules where
the profiling needs more information to run. An example is the time series profiling,
which needs to know which attribute of a data source contains the time id and which
attribute contains the value of the time series. Here, running automatically over ev-
ery combination would produce extreme load and generate lots of meaningless rules.
Thus we assume the data steward can steer the process better using business knowl-
edge of the data. For the basic profiling UI, we use one generic kind of dialog. For
the advanced profiling UI, each profiling module defines its own UI components and
parameters that are needed to steer this module.

4.2. Profiling, Statistics and Rule Generation

In this section, we describe the basic idea behind our profiling mechanism. Tradi-
tionally, profiling means to generate some statistics about data. Basic statistics for a
single column include the percentage of NULL values, the number of different values
occurring, and the percentile values. In our profiling module, these values are used
to generate profiling rules. Each profiling module uses the data or some statistics
generated from the data in order to build candidate rules to describe the data. Each
profiling module can generate one specific kind of rule or one set of rule types. A
profiling module for NOT NULL rules can e.g. generate a hard NOT NULL rule that
requires each instance of a column to be NOT NULL, or a percentage NOT NULL rule
that requires a certain percentage of instances to be NOT NULL. Suppose for instance
that the NOT NULL statistic reveals that 97 percent of the instances of a column are
NOT NULL. This could lead to the generation of two rule candidates: one hard rule
that requires each instance to be NOT NULL and one probabilistic NOT NULL rule
that assume the probability of a value to be NULL is 0.03. In general, the idea is
that at least one rule candidate describes the data as is exactly, and possibly multiple
alternative candidates describe the data including some potential errors. Thus, the
result of the above profiling could be presented to the user as shown in listing 4.1.

65

4. Profiling

4.3. Profiling Methods

In the following, we present details of selected profiling modules in order two better
show our approach and the way of thinking behind these modules. In general, every
module might either output rules that are completely satisfied by the current data
or rules that already declare some data as errors or warnings. For these rules, every
module has a maxoutlier configuration parameter that steers how many errors are
acceptable for a rule to ultimately be suggested.

4.3.1. NOT NULL profiling

In the rule catalog, we have two kinds of NOT NULL rules. The first is a hard rule
that outputs an error when there is at least one NULL entry. The second is a soft
variant that is based on statistical assumptions. The assumption is that each value
has a certain probability p of being NULL, independently of the other values. Thus
the random variable X that counts the number of NULL values follows a Binomial
distribution with the parameters p and n, the current size of the data source. The
score that the rule outputs is the probability that X is smaller than the current value,
i. e. P (X < x), where x is the current number of NULL values. Typical thresholds
are then 0.95 for warnings and 0.99 for errors, meaning that the probability of having
an as-large or larger number of NULL values is smaller than 0.05, as P (X ≥ x) =
1 − P (X < x) (under the chosen assumptions). Thus the soft NULL rule essentially
performs a one-sided Binomial test, and the thresholds determine the significance level.
However, we use 0.95 and 0.99 and P (X < x) instead of 0.05 and 0.01 and P (X ≥ x) as
our system uses the general convention that larger scores indicate more severe quality
problems.

The NULL profiling module starts by counting the current number x of NULL values
in the chosen attribute, and the overall size of the relation n. The module suggests a
hard rule in case that the overall number of NULL values is smaller than the “max
errors” parameter. A soft rule is suggested in case that at least one NULL value exists,
using the estimate x/n for the parameter p. However, when this estimate for p is larger
than 0.5, we don’t suggest any rule, as in this case NULL values are more probable
than NOT NULL values. The standard thresholds that are suggested are 0.95 and
0.99 for warnings and errors, respectively.

As an example, assume we have a column with 1000 entries where only 2 are NULL.
In this case, it is possible that there is a business reason for these NULL values, or
these values might be data quality problems. Accordingly, the profiling module will
suggest a hard NOT NULL rule and output that this rule will generate two errors
based on the current status, and it will additionally suggest a soft NOT NULL rule
with p = 0.002. The steward then must make a decision between these two rules based
on his domain knowledge. In case that a column does not have any NULL values, only
the hard NOT NULL rule is suggested.

Listing 4.2: DSL code for probabilistic NOT NULL check.

CHECK NotNullCheckProb ON LIST lst(value) WITH p:

66

4. Profiling

LIST cntNull := SELECT COUNT (*) FROM lst WHERE value IS

↪→ NULL;

LIST cntAll := SELECT COUNT (*) FROM lst;

score := BINOM(cntNull -1,cntAll ,p);

RETURN score;

END

4.3.2. Range profiling

A range rule states that the value x of a column must be between two values l and u.
The score is 0 when l ≤ x ≤ u, and it is the absolute deviation from the lower or upper
value in case that it is smaller than l or larger than u. The profiling module for this
rule examines the current column values. The first rule that is output is a rule that
uses the minimum and maximum value occurring as l and u, respectively. This rule
does not return any error for the current data set. The second rule copes with outliers.
For this, the lower and upper quantile (Q1 and Q3) of the values are computed and the
typical outlier definition using the interquartile distance IQD = Q3 − Q1 is applied.
Thus we define l = Q1− 1.5 ∗ IQD and u = Q3 + 1.5 ∗ IQD. Using these boundaries,
we count the number of outliers and check whether the number is not larger than “max
outliers”. When this is true, we suggest the alternative range rule.

4.3.3. Foreign key dependencies

Foreign key profiling works essentially exactly as NULL profiling, because we use the
current number of violations of the foreign key as basic statistic. Based upon this
statistic, the module chooses to suggest a hard and/or a soft rule to check the foreign
key. However, foreign key profiling is an advanced method, because it would be too
inefficient to try every possible attribute combination between any data sources. Thus,
we expect the data steward to steer the profiling by defining foreign key candidates
that should be checked.

4.3.4. Time series profiling

This module uses the R statistics package to estimate a time series model based on
the data. For this, we need a data source with columns that carry the time identifier
and the time series value. The whole time series is read and sent to R in order to
retrieve an SARIMA model. The SARIMA model is converted into a constant data
source (cf. listing 3.4) and will be stored in the rule repository along with the rule in
case the rule is accepted by the data steward.

Based upon the SARIMA model, the time series is checked as described in sec-
tion 3.2. The value of every data point is compared to the 95% and 99% prediction
interval. In case it is outside either interval, the point is declared to be a warning or
an error, respectively. The warnings and errors are counted and displayed to help the
steward to decide whether to accept or decline the suggestions. In the future, we also

67

4. Profiling

plan to integrate a graphical display of the time series, its model, and the detected
warnings and errors in the UI component.

4.3.5. Cube profiling

A multidimensional data cube is a set of aggregate cells over a base relation that
has dimensional attributes and metric attributes [2]. Almost any cube has a time
dimension. To check the data of a cube, we profile how the data in the cells varies over
time using the time dimension, and define a cube model based upon these statistics.
Thus, a cube model is essentially a set of cell models.

During profiling, we need to choose the subset of cells for which models are com-
puted, as the overall number of all possible cells is typically extremely large (growing
exponentially in the number of dimensions). Our main criteria is the availability of
enough data for a cell to be included in the model. First, the user chooses a time
interval for the profiling (i. e. daily, weekly, monthly). Then the profiling process cal-
culates a cube for every interval separately. In order to limit the computational power
and memory requirements, we limit these cubes to Iceberg cubes [31] using a threshold
parameter. This means that only cells where the metric value is above the threshold
are included in the cube. Then, we run through all time intervals and collect statistics
about all cells that exist in every time interval. This ensures a focus on the higher-level
aggregate cells that contain enough information for reliable models.

Currently, we use a Gaussian distribution to model each cell’s value. Thus we use
the sequence of metric values computed for the current cell for every time interval to
estimate µ and σ. The overall cube model consists of all these values for the selected
cells. The cube model is provided in the format of a constant data source of our
quality rule language (similar to time series above) and can thus be easily used in
quality checks, if the corresponding suggested rules are accepted by the data stewart.
The final steps are also identical to the time series profiling: we use the model to
calculate the current number of warnings and errors and suggest the rule together
with this information.

4.4. Design

In the UI, we distinguish between standard and advanced profiling. The differences
are, that the standard UI will output many suggestions for e. g. different columns of a
table for multiple kinds of simple data quality rules, whereas the advanced UI one only
generates suggestions for one kind of rule per profiling. Even though the output of both
methods varies in quantity, the form is the same; one or more rule candidates written
in the DSL with additional information, e.g. about potential outliers. Therefore, we
decided to split these methods only UI-wise and provide a common interface in the
back-end. An example for standard rule suggestion would be the execution of the
multiple profiling methods over multiple data sources, this could be triggering a null
and unique profiling, and, depending on the data type, range or string length profiling
for each column of a given table. Triggering the profiling for a time series model,

68

4. Profiling

an ARIMA model for instance, on a given time series (e.g. the daily revenue of a
business over the last two years), is an example for an advanced rule suggestion. This
architecture enables an easy way to increase the amount of provided rule generation
methods, due to the fact that the profiling service only has to provide one interface,
regardless of how the UI works.

Internally the Profiling-Service contains a number of profiling methods, one for each
supported Check to generate Actions for. In order to not have to process the same
source data every time a profiling method is triggered, it is possible to group profiling
methods, which use the same Source, together, to calculate all statistics about them
in the fewest possible iterations over the data (modules might need source data in a
specific order, which can result in reading the same source data multiple times).

4.5. Architecure

The architecture, in form of a class diagram, is shown in figure 4.1. The profiling
service is mostly defined by its ProfilingMethods, which will calculate statistics about
source data and use those to generate rule candidates. Each profiling method will
generate rules (Action DSL code) for a specific Check, as indicated by its name (e.g.
NullCheckProfiling). In the shown diagram only three different methods are shown,
this is meant as an example of how profiling methods may look like.

The ProfilingManager supervises and handles all executions of profiling methods.
It contains references to all current queued methods and the source data they need.
Further, the manager requests the source data from the DBManager and distributes
it to the dependent profiling methods. The first step is to execute each method unop-
timized, meaning every Source is read for each ProfilingMethod instance. In order to
increase the performance, an execution plan has to be generated which orders database
accesses in such a fashion, that data has to be read the fewest times possible. Depen-
dencies of data sources have to be minded. A method may need one Source before it
can handle another one, which may result in the need to read Sources multiple times.

4.5.1. ProfilingMethod

The ProfilingMethod is an abstract class serving as a template for all different kinds
of profiling methods. Each method corresponds with a Check and generates Actions
for that Check. The class contains a map of profiling parameters, which can be used
to adjust the profiling. Mandatory methods for all profiling methods are nextValue()
and getResult(). While the latter one is used to trigger the final result calculation, the
nextValue() method is used to sequentially feed data to a method. This was introduced
to enable multiple profiling methods access to the same source data while reading it
only once. A manager class reads all source data and calls all profiling methods
nextValue() methods, which need that data. Each profiling call, which consists of (at
least) profiling type and source data, instantiates a new ProfilingMethod object, which
is registered at the ProfilingManager.

69

4. Profiling

Figure 4.1.: General architecture of the Profiling-Service.

70

4. Profiling

4.5.2. ProfilingResult

The information gained from a ProfilingMethod is saved in the ProfilingResult entity.
It contains information about the execution, like which method was used and on what
source data. Also saved are key statistics about the source data, calculated by the
method and used to generate the rule candidates. The candidates are the last and
most important part of the ProfilingResults. One result may contain multiple rule
candidates, one of which represents the data as is, meaning that outliers were not
excluded from the calculations. Other rule candidates may represent the data with
varying methods of outlier removal applied. A rule candidate consists of an Action and
two lists of tuples. The lists contain data which either produce an error or a warning,
respectively, if the rule was enforced on the current source data. This is a result of
the outlier consideration of the profiling module. The idea behind outlier removal in
profiling for rule candidates is, that the source data might already have some data
quality issues.

4.5.3. API

Information needed for the profiling component is foremost a Source, an indicator for
data (in relational terms a column) and the desired profiling method. Alongside the
selected method optional parameters might be added. Listing 4.3 shows a sample
REST call to trigger a profiling for a RangeCheck and a NullCheck on the Customers
age and also a FunctionalDependencyCheck for the Customers City and ZIP.

Listing 4.3: Sample REST call of for the Profiling-Service.

HTTP/POST profiling -service/profile

[{

"method ": "range",

"data": {

"sourceID ": "Customer",

"indicator ": "age"

},

"params ": {

"maxOutlier ": 10

}

},

{

"method ": "null",

"data": {

"sourceID ":" Customer",

"indicator ": "age"

}

},

{

"method ": "functionalDep",

71

4. Profiling

"from": {

"sourceID ":" Customer",

"indicator ": "City"

},

"to": {

"sourceID ": "Customer",

"indicator ": "ZIP"

}

}

}]

72

5. Feedback Loop

5.1. Return values from checks

To structure the collection of feedback, the return values from checks must be stan-
dardized. This is described in section 2.2.7 of this document. The results of the checks
are stored in the reports databse.

In the next step, feedback is given by the user through the GUI. For each individual
record returned by a rule (errors and warnings) the following classification is needed
and should be done by the user:

• A: error. It is a real data quality problem. The issue should eventually be fixed
in the underlying database.

• B: normal value. No error, the value is correct.

• C: outlier. No error, but an unusual value. In this case, the rule is ok, however
the values should later on be ignored.

This feedback indicates changes to the underlying rule as listed in figure 5.1.

Warning Error
A stronger rule: report as error no change
B weaker rule: don’t report weaker rule: don’t report
C no change; ignore only this issue no change; ignore only this issue

Figure 5.1.: Rule changes indicated by user feedback.

Please note that feedback in general might be contradictory. I.e. a user might
confirm an age of 101 for customer X while marking the same age for customer Y as
an error. In this case, a range profiling method could not be written that takes both
types of feedback into account. In this case, setting the age 101 of X as an outlier
value would have been the better option.

After collecting feedback, the profiling should have a new entry page where all actions
are listed that currently have unprocessed feedback. The actions could by sorted in
decreasing order of the number of feedbacks stored for each action.

For each of these actions, a re-profiling can be started, that tries to update the
action in order to make it a better fit with the collected feedback. Some re-profiling
methods also generate multiple suggestions, and some also could suggest to delete the
rule.

73

5. Feedback Loop

5.2. Rule types

We distinguish several rules types according to the following list:

• Hard rules: these output only errors, but no warnings. Feedback can be A, B or
C based on individual records or values (Type 1 or type 2 feedback). Examples:
NOT NULL, Range, Functional Dependency, Unique, Referential Integrity

• Statistical rules: these output a score, and classify larger scores into warnings or
errors. This type has two sub-types:

– One score for each individual data item or smaller groups of data items:
Time series, Cubes. There can be a single feedback for each data item /
group of type A, B, and C.

– Only a single score for the whole data set: PercentageNull, Distribution.
Here we only have a single feedback record. Only type A or B are useful.
Type C would indicate to delete the rule. Perhaps the GUI should not allow
to assign C to these records.

Note: For the last type, it would be interesting to assign individual feedback to the
underlying data items. However, this is out of the scope of our prototype.

5.3. Re-profiling for individual actions

The exact algorithm for re-profiling depends on the type of check underlying the action.
Re-profiling is only possible if there is a re-profiling method implemented for the target
check. In general, results of type C are ignored during the re-profiling, as they are
declared to be outliers. Thus the input to the profiling is a set of records / values,
that are classified as A (error) or B (correct value) or D (values that have no feedback
so far).

The number of records in these groups that are feed into the re-profiling is denoted
with |A|, |B|, and |D|. The whole number of records is denoted n. In the case of
re-profiling, n does not include type C records, as they are ignored.

5.3.1. Re-profling for NOT NULL

The following suggestions are generated:

• Keep the current NOT NULL rule. This implies that all B records (NULL values
declared as normal) are converted to C records (outliers).

• When there are any B or D values, then a percentage NULL rules is generated.
p is computed as: |B|/n. This means that there will probably still a warning or
an error as long as there are type D records (no feedback) as these are not used
to increase p appropriately.

74

5. Feedback Loop

5.3.2. Re-profiling for RangeCheck

The range check generates a single suggestion. The goal is to enlarge the admissible
range to include as many B values as possible while not including any A values into the
range. Thus we increase the upper bound to the largest B values that is still smaller
than the smallest A value above the current upper limit u:

u′ = max(u, {b ∈ B; b > u ∧ ∀(a ∈ A s.t. a > u) : b < a}) (5.1)

A similar logic holds for the lower bound l:

l′ = min(l, {b ∈ B; b < l ∧ ∀(a ∈ A s.t. a < l) : b > a}) (5.2)

A small example: we have a range of 0 to 100, and reports about the values 101, 102,
103, and 104. The feedback ist B, A, B, C. Thus we first increase the upper bound to
103 to make 101 and 103 valid values. However, now 102 is no more reported. Thus
we decrease the upper bound to 101 to make it an error again. Finally, we change 103
to type C (outlier).

An alternative would be to re-label A to B and to set the upper bound to 103.
However re-labeling A to B is rather dangerous and thus discouraged.

5.3.3. Re-profiling for percentage NOT NULL

Here, we only have a single feedback. The report might be a warning or an error. We
generate the following suggestions:

• Error, Type A: No change to the rule.

• Warning, Type A: Lower the error bound to the current score, so that the same
score will be reported as an error later on.

• Warning or Error, Type B: Re-calculate p based on the current data so that the
current distribution will no more be reported as an error.

• Warning or Error, Type C: Distribution is an outlier. Suggest to delete the rule.
(or avoid feedback C for this type of rule)

5.3.4. Re-profiling for time series

First, we try to build new warning and error boundaries. The goal is to have all type
A records as errors. Thus the first suggestion is to change the error boundary to the
smallest score of any type A record. This implies to change all type B records that
are above this boundary to type C records. Finally, the warning boundary can be
increased up to the largest type B record that is currently a warning, making these
records normal.

Second, we compute a new model. For this, we re-compute the time series, including
only type B values. Type A and type C values are replaced with appropriate mean
values. The resulting model is then applied using standard boundaries.

75

5. Feedback Loop

Overall, this yields two different rule suggestions that will be presented to the user.
For each suggestion, we count how many B records will be warnings or errors (thus
changed to C records) and how many type A records are only warnings or normal
values (this can only happen for the second suggestion. The second suggestion also
includes the possible to detect new warnings or errors that were normal before.

5.3.5. Re-profiling for cubes

Implementation similar to time series re-profiling.

76

6. Related Work

6.1. Existing solutions for data quality monitoring

The predecessor of this project, the Data Checking Engine (DCE) [18], had also been
developed in our group. It is an SQL-based system for complex data quality rules.
The DCE provides an interface for data quality managers to compose data quality
rules in form of SQL statements. Even though templates were introduced to reduce
the complexity of rule composition, especially regarding the creation of multiple rules
of the same type for a lot of different data, the complexity of SQL and the underlying
database schema still has to be known by the domain expert. Also, once written, rules
were hard to read and to fully comprehend. Therefore, this project, as a successor,
and especially the DSL copes with the mentioned problems the DCE has, in form of
the separation of concerns via the split into Sources, Checks and Actions.

Endler et al. developed an architecture for continuous data quality monitoring in
medical centers [12] which has many similarities with our proposal. They also handle
data quality monitoring with a rule-based approach. In contrast to our solution, they
did not introduce a DSL for describing rules. The most basic shown rules are simple
boolean operations directly defined for the underlying database. That also shows the
second part where our approaches differ, the rule system in [12] is designed for a special
medical unified database system without the possibility to easily extend the database
environment or adapt other schemas.

Recently, [27] presented an approach with a very similar goal to our work, namely
automating data quality checks in large data sets. Whereas the goal and some of the
features are similar to our approach (e. g. presence of a wide range of basic types
of checks, methods to automatically suggest potential quality rules, integrating het-
erogeneous data sources), significant differences are also present. They use a more
sophisticated optimization procedure to efficiently process the checks based on Spark
and address differential quality checking in detail (which is not applicable to all checks
in our system). On the other hand we provide more advanced data quality checks
such as ARIMA time series model based checks or dimensional checks, require less
programming knowledge by the DQ manager by separating concerns in the rule defini-
tion, have a comprehensive profiling component that can also detect complex quality
rule candidates and facilitate what Jack Olsen calls “value rules” [24], which are checks
that output a score instead of a clear correct/error decision.. To this end both ap-
proaches complement each other. Another approach for a rule based data validation
system called GuardianIQ is introduced by David Loshin [23]. His concept is a quality
monitoring based on business rules and executed in SQL. Focus of this solution also
lies on the distinction between data cleansing and data quality in conjunction with

77

6. Related Work

metrics to quantify data quality. However, we were not able to perform a closer com-
parison, since only rough information was given in a short paper from 2002 without
newer publications.

Lastly, Batini et al. suggested a methodology for data quality assessment and im-
provement called Heterogenous Data Quality Methodology (HDQM) [5]. As the name
suggests, their idea is a methodology applied to the processes of businesses. It provides
guidelines - in form of a so called meta-model - on how to design the data quality pro-
cess integrated in the target system. Whereas their system integrates in the business
process requiring a complete remodeling of the users system, our approach can be seen
as a complementary addition to apply to existing systems.

All in all, partial solutions similar to our approach exist, especially when looking at
the DCE or the rule based approach from Endler et al. What is missing is a unified
framework to cover all needs for data quality monitoring including most techniques for
data quality checking and the ability to easily extend them, together with - especially
- the aspect of monitoring heterogeneous data sources, which has neither been covered
by the DCE, nor Endler’s solution. All in all, the extension of compatibility for
heterogeneous data sets based on a well-defined internal data model, the split between
technical and subject-specific knowledge and the advanced types of quality checks such
as ARIMA set our approach apart from existing solutions.

Database constraints are well-known, and reaseach about extended kinds of con-
strains like conditional functional dependencies (CFD) [7] is going on. RADAR is
designed to capture all of these types of constraints. Furthermore, we also allow For
these checks, all kinds of outlier detection [3] algorithms are interesting. Both, un-
supervised algorithms can be implemented, as well as supervised algorithms that use
some kind of model. Here, we are specifically interested in time series outlier detection
[16] and outlier detection in multidimensional data (see e.g. [22]), as this fits perfectly
with typical data warehouse data.

6.2. Individual implementation aspects

From the operational and query side, our work touches mutliple lines of work in the
database research that we are going to mention here. First of all, our RADARlanguage
allows to formulate queries integrated into an imperative language. This is similar
on the one hand to approaches like Oracle’s PL/SQL [14] or other stored procedure
languages, and on the other hand to LINQ-approaches (language integrated queries),
see [10]. Yet another approach is to integrate SQL with functional programming [6].
However, our combination is specific to the domain of data quality and offers specific
features for that.

Furthermore, RADAR can act as a mediator [15] allowing to query and integrate
multiple sources using a single piece of code. Thus the query optimization issues are
quite similar to those in mediator-based systems. However, we don’t define a global
schema but allow the checks to directly access the individual sources, which is more
appropriate for data quality checks. Similarly, a lot of work has been published in
federated query processing. Those results are of interest for the further optimization

78

6. Related Work

of the execution of our quality checks. This is still ongoing because in the initial version
the processing is not performed in a federated way (with exceptions as explained in
section 2.5).

RADAR can access both relational and NoSQL databases from the same code, which
again is a generic problem in heterogeneous environments. Here, both query languages
(i.e. UnQL, [9]) and systems have been developed. There are multiple mediator
approaches, e.g. [4, 21, 32, 26] that allow to query relational and NoSQL-data from
a unified SQL-like language. They are to some degree comparable, however they lack
the parametrizing features vital for our approach. Fitting queries to document-based
and relational data in a concise syntax with understandable semantics is still an issue.

Parametrizing SQL in the way we do it – parameterizing also schema elements like
attributes and relations and with the option to e.g. use a compound foreign key
as actual parameter for a single attribute parameter – is, as far as we know, a new
feature. From our point of view it is vital to achieve the flexible modularization and
reuse-capabilities we are targeting. The only comparable approach uses the Maude
system [28] to rewrite parametrized SQL statements. However, we integrated the
parametrization capabilities into our core language.

6.3. Advanced rules and profiling

An overview of data profiling can be found in [1]. There is a wide range of research
activities about various constraint types and efficient methods to detect them. As an
example, there has been research about extensions to FD in order to improve them.
One result are conditional functional dependencies (CFD) as described in [7] and
even an extension to them called eCFD presented in [8]. Techniques for discovering
CFDs are shown in [13, 11], which is useful for our rule detection engine. All kinds of
outlier detection [3] algorithms are interesting for our work as well. Both, unsupervised
algorithms can be implemented and provided as rule types, as well as supervised
algorithms that use some kind of model. Here, we are specifically interested in time
series outlier detection [16] and outlier detection in multidimensional data (see e.g.
[22]), as this fits perfect with typical data warehouse data.

6.3.1. Alte version

Data quality is a topic with many facets, a lot of different kinds of data quality exist;
section 1.1 gave more insight on that. After defining data quality itself one can think
about methods to check for data quality. Beside simple well established statistics of
data, like row count, null count and unique count among others, the usual database
constraints may apply as well, functional dependencies (FD) for example. There has
been research about extensions to FD in order to improve them. One result are
conditional functional dependencies (CFD) as described in [7] and even an extension
to them called eCFD presented in [8]. Techniques for discovering CFDs are shown in
[13, 11], which is useful for our rule detection engine. All kinds of outlier detection
[3] algorithms are interesting for our work as well. Both, unsupervised algorithms can

79

6. Related Work

be implemented and provided as rule types (specific functions in checks), as well as
supervised algorithms that use some kind of model. Here, we are specifically interested
in time series outlier detection [16] and outlier detection in multidimensional data (see
e.g. [22]), as this fits perfect with typical data warehouse data. Our plan is to gradually
support more and more of these new rule types for data quality monitoring.

Following we will show some existing solutions for data quality monitoring, starting
with the predecessor of the project IQM4HD, the Data Checking Engine (DCE) [18].
It is an SQL-based system for complex data quality rules. The DCE provides an
interface for data quality managers to compose data quality rules in form of SQL
statements. Even though templates were introduced to reduce the complexity of rule
composition, especially regarding the creation of multiple rules of the same type for a
lot of different data, the complexity of SQL and the underlying database schema still
has to be known by the domain expert. Also, once written, rules were hard to read
and to fully comprehend. Therefore, this project, as a successor, and especially the
DSL copes with the mentioned problems the DCE has, in form of the separation of
concerns via the split into Sources, Checks and Actions.

Endler et al. developed an architecture for continuous data quality monitoring in
medical centers [12] which has many similarities with our proposal. They also handle
data quality monitoring with a rule-based approach. In contrast to our solution, they
did not introduce a DSL for describing rules. The most basic shown rules are simple
boolean operations directly defined for the underlying database. That also shows the
second part where our approaches differ, the rule system from Endler et al. is designed
for a special medical unified database system without the possibility to easily extend
the database environment or adapt other schemas.

Another approach for a rule based data validation system called GuardianIQ is
introduced by David Loshin [23]. His concept is a quality monitoring based on business
rules and executed in SQL. Focus of this solution also lies on the distinction between
data cleansing and data quality in conjunction with metrics to quantify data quality.
However, we were not able to perform a closer comparison, since only rough information
was given in a short paper from 2002 without newer publications.

Lastly, Batini et al. suggested a methodology for data quality assessment and im-
provement called Heterogenous Data Quality Methodology (HDQM) [5]. As the name
suggests, their idea is a methodology applied to the processes of businesses. It provides
guidelines - in form of a so called meta-model - on how to design the data quality pro-
cess integrated in the target system. Whereas their system integrates in the business
process requiring a complete remodeling of the users system, our approach can be seen
as a complementary addition to apply to existing systems.

All in all, partial solutions similar to our approach exist, especially when looking at
the DCE or the rule based approach from Endler et al. What is missing is a unified
framework to cover all needs for data quality monitoring including most techniques for
data quality checking and the ability to easily extend them, together with - especially
- the aspect of monitoring heterogeneous data sources, which has neither been covered
by the DCE, nor Endler’s solution. That is why the extension of compatibility for
heterogeneous data and the split between technical and subject-specific knowledge
sets our approach apart from existing solutions.

80

7. Conclusion

7.1. Open Issues

• The DSL has lots of reserved words, that must not be used as identifiers. This
currently includes all names of build-in methods. This problem is not so bad as
we decided to make the DSL case-sensitive, and all reserved words must be in
upper case. However, a better handling of e.g. method names would be better.

• The implementation of list expressions currently only supports equijoins.

• In case of errors, only the predefined roles are reported. Often, additional roles
are useful to identify the data error. Thus a new predefined role to report ad-
ditional information evaluated by the RETURN statement would be helpful.
Another solution would be to always report any role present in the return state-
ment.

• The implementation of aggregation functions (e.g. SUM) does not allow ex-
pressions as parameters, only single identifiers. This leads to over-complicated
formulations of checks. An example is the DistributionCheck.

• Currently, the role assignment from sources proceeds from the existing attributes
in the source. Thus, for each attribute that is present, a role definition is
searched. If one is found, then a corresponding role is created in the record.
This means that a missing attribute does not lead to a role that contains a
NULL value but rather in a missing role. To compensate, the interpreter as-
sumes NULL when a non-present role is accessed. However, this makes finding
errors in the DSL code much more complicated, as a misspelled role name is
substituted silently with NULL.

• The error handling is very bare; it is often complicated to find errors in self-
written DSL code due to incomprehensible error messages.

• The PERCENTAGE keyword is not implemented

• The IF construct in EXECUTE-statements in ACTIONS is not implemented.

• Within a check, no Source can be addressed. This could be helpful, as an exam-
ple, we have the EmailCheck that references the email pattern from within the
check. However, this would need some additional syntax that disambiguates role
/ variable names and source names.

81

7. Conclusion

• We have a separate prototype that optimizes the access order of data sources
when running multiple profiling modules in parallel. This must be integrated
with the main prototype.

• The handling of multiple consecutive errors in time series models does not work
currently.

82

A. Rulecatalog

A.1. Column property checks

These checks target individual values of single attributes or single records. Each Check
will be described and an example Action will be given. The Sources used in those
examples are the following:

SOURCE Customer TYPE LIST QUERY ROLES (id: IDENTIFIER):

DATABASE cust NATIVE

SELECT id, name , firstname , dob , email ,

title , bonus

FROM customer

END

SOURCE EmailPattern TYPE CONST ROLES (email):

"[a-z0 -9._%+-]+@[a-z0 -9. -]+\.[a-z]{2 ,4}"

END

A.1.1. NotNullCheck

The NotNullCheck is one of the most simple and basic checks this software provides.
Its return value is dependent on whether the given value is null or not. This should
only be used if you are certain the data set you want to check does not have many null
values. Too much error output would occur otherwise.

Note hat due to the execution logic, if a compound role is given as value, all parts
must be NULL to count as a violation, because

[13,NULL] IS NULL = [FALSE,TRUE] = FALSE

and thus no TRUE is returned. If it is desired to find such situations, a NULL check
must be applied individually to each attribute.

• value Value to be checked (a record, might consist of multiple attribute)

CHECK NotNullCheck ON value:

RETURN value IS NULL;

END

83

A. Rulecatalog

The following Action uses the NotNullCheck to check the customer’s email addresses
for NULL values. The result set will mark all tuples of the customer table where the
email field is NULL as an error.

ACTION NotNullCheckCustomerEmail:

EXECUTE NotNullCheck ON EACH Customer(email)

RESULT IN ERROR

END

A NotNullCheck may also be used on a key inside a document originating from a
document database as shown in the following listing.

SOURCE CustomerAddressWithEmpty TYPE LIST QUERY ROLES

(_id: IDENTIFIER):

DATABASE custmongo NATIVE

db.customer.aggregate ([

{ $unwind: { path : "$address",

preserveNullAndEmptyArrays: true } }])

END

ACTION NotNullCheckCustomerAddress:

EXECUTE NotNullCheck

ON EACH CustomerAddressWithEmpty(address)

RESULT IN ERROR

END

A.1.2. RangeCheck

The RangeCheck is another very basic Check. It checks whether the given value is
in the defined range. When the given record contains more than one attribute, each
attribute has to be in the range in order to not violate the Check.

• ON value - Value to be checked

• WITH lower, upper - range thresholds the value should be checked against

CHECK RangeCheck ON value WITH lower , upper:

RETURN NOT (value >= lower AND value <= upper);

END

This Action checks whether the customers age’s are within the range of a person of
age (18) as the lower bound and 100 as the upper bound.

ACTION RangeCheckCustomerAge:

EXECUTE RangeCheck ON EACH CustomerWithAge(age) WITH 18,

↪→ 100

84

A. Rulecatalog

RESULT IN ERROR

END

A.1.3. BoundaryChecks

There are two boundary Checks; Lesser and Greater. They can be used if the range of
values is bound only in one way. For example a LesserCheck could be applied to the
price column of a product table. A product should not cost less than 0.01.

• ON value - Value to be checked

• WITH threshold - threshold the value should be checked against

CHECK NotLesserCheck ON value WITH threshold:

RETURN value < threshold;

END

CHECK NotGreaterCheck ON value WITH threshold:

RETURN value > threshold;

END

ACTION NotLesserCheckCustomerAge:

EXECUTE NotLesserCheck ON EACH CustomerWithAge(age) WITH

↪→ 18

RESULT IN ERROR

END

A.1.4. PatternCheck

The PatternCheck matches the given value against a regular expression.

• value - Value to be checked

• pat - A regular expression describing valid values

CHECK PatternCheck ON value WITH pat:

RETURN NOT MATCHES(value , pat);

END

A special case of the PatternCheck is the EmailCheck. It was introduced due to the
fact, that email addresses are a very common and always follow the same pattern.

• email - Email address which should be checked for the correct syntax

85

A. Rulecatalog

CHECK EmailCheck ON email:

EXECUTE PatternCheck ON email WITH EmailPattern;

END

Another special case is when the source data for the pattern check is found inside
a nested document; in this case the phone numbers should match a phone number
pattern. This is primarily handled by a fitting Source declaration:

SOURCE CustomerPhoneProj TYPE LIST QUERY ROLES

(_id: IDENTIFIER , phonePos: IDENTIFIER):

DATABASE custmongo NATIVE

db.customer.aggregate([

{ $unwind : { "path" : "$phone",

includeArrayIndex : "phonePos" } },

{ $project : { "name" : 1, "firstname" : 1,

"phone" : 1, "phonePos" : 1 } }

])

END

The Check and Action are similar to above (the definition of PhonePattern is
straight forward and omitted here):

ACTION PhonePatternCheck:

EXECUTE PatternCheck

ON EACH CustomerPhoneProj(phone: value)

WITH PhonePattern

RESULT IN ERROR

END

If additionally only certain elements have to match a given pattern, this can be
expressed by adjusting the Check accordingly; in this example every second phone
number per customer has to be a mobile phone number which can be identified by a
specific pattern MobilePhonePattern:

CHECK PositionPatternCheck ON LIST values(val , pos) WITH

↪→ pat:

LIST nos := SELECT val FROM values WHERE pos == 2;

FOR n IN nos:

RETURN NOT MATCHES(n, pat);

END

END

ACTION MobilePhonePatternCheck:

EXECUTE PositionPatternCheck

ON CustomerPhoneProj(phone: val , phonePos: pos)

WITH MobilePhonePattern

86

A. Rulecatalog

RESULT IN ERROR

END

Note, that the Check specification is completely independent of the application
area and the same check may also be used to check a pattern in the second element
of e.g. a list of first names by calling it from a different Action. In addition, the
implementation should be made even more generic in practice by supplying the position
to be used for the Check as an additional parameter; this is omitted here for simplicity
of presentation.

A.1.5. ContainsCheck

• value - column value to be checked (or columns)

• values - the set the value should be contained in

CHECK ContainsCheck ON val WITH LIST values:

RETURN val IN values;

END

A.1.6. NestedDocumentValueCheck

The following example can only be applied to Sources which provide hierarchically
nested values as data such as document databases. The example shows how it can
be checked that every address named value in a list element contains a sub-element
street which in turn contains a sub-element with key name which is not empty.

SOURCE CustAddWithPos TYPE LIST QUERY

ROLES (_id: IDENTIFIER ,

adrPos: IDENTIFIER):

DATABASE custmongo NATIVE

db.customer.aggregate ([

{ $unwind: { path : "$address",

includeArrayIndex : "adrPos" } }])

END

ACTION NotNullCheckCustomerCountry:

EXECUTE NotNullCheck

ON EACH CustomerAddress(address.country: value)

RESULT IN ERROR

END

87

A. Rulecatalog

A.2. Structure analysis checks

A.2.1. QuantityCheck

CHECK QuantityCheck ON LIST list1 WITH LIST list2:

LIST cnt1 := SELECT COUNT (*) FROM list1;

LIST cnt2 := SELECT COUNT (*) FROM list2;

RETURN cnt1 != cnt2;

END

ACTION DWHQuantityCheckCustomer:

EXECUTE QuantityCheck ON DWH_Customer WITH Customer

RESULT IN ERROR

END

A.2.2. SumCheck

CHECK SumCheck ON LIST list1(val1) WITH LIST list2(val2):

LIST sum1 := SELECT SUM(val1) FROM list1;

LIST sum2 := SELECT SUM(val2) FROM list2;

RETURN sum1 != sum2;

END

ACTION DWHSumCheckCustomer:

EXECUTE SumCheck ON DWH_Customer(bonus) WITH Customer(

↪→ bonus)

RESULT IN ERROR

END

A.2.3. UniqueCheck

CHECK UniqueCheck ON LIST src(val):

RETURN LIST

SELECT val ROLE value , COUNT (*) ROLE cnt

FROM src

GROUP BY val

HAVING cnt > 1;

END

88

A. Rulecatalog

A.2.4. Referential Integrity

CHECK ReferentialIntegrityCheck ON LIST src(fk)

WITH LIST target(pk):

RETURN LIST

SELECT fk ROLE value

FROM src LEFT JOIN target ON fk = pk

WHERE pk IS NULL;

END

The referential integrity check also works with nested values, e. g. originating from
document databases as shown in the following example: There the nested document
with key family which is a list of family members of a customer is equipped with the
check that name and firstname have to refer to an existing customer document:

SOURCE CustomerFamilyWithPos TYPE LIST QUERY ROLES

(_id: IDENTIFIER , familyPos: IDENTIFIER):

DATABASE custmongo NATIVE

db.customer.aggregate ([

{ $unwind: { path : "$family",

includeArrayIndex : "familyPos" } }

])

END

ACTION RICheckCustomerFamily:

EXECUTE ReferentialIntegrityCheck

ON CustomerFamilyWithPos(family.name: fk ,

family.firstname: fk)

WITH CustomerFamilyWithPos(name: pk , firstname: pk)

RESULT IN ERROR

END

A.2.5. Functional Dependency

CHECK FunctionalDependencyCheck ON LIST src(left , right):

RETURN LIST

SELECT left ROLE value ,

MIN(right) ROLE minval , MAX(right) ROLE maxval

FROM src

GROUP BY left

HAVING minval != maxval;

END

89

A. Rulecatalog

The functional dependency check can also be applied to nested values. In the ex-
ample below a functional dependency from ZIP code to city is assumed, but the infor-
mation is only available nested inside the address sub-document of the customers:

SOURCE CustAddWithPos TYPE LIST QUERY

ROLES (_id: IDENTIFIER ,

adrPos: IDENTIFIER):

DATABASE custmongo NATIVE

db.customer.aggregate ([

{ $unwind: { path : "$address",

includeArrayIndex : "adrPos" } }])

END

ACTION FdCheckCustomer:

EXECUTE FunctionalDependencyCheck

ON CustAddWithPos(address.zip: left , address.city: right)

RESULT IN ERROR

END

A.3. Value checks

A.3.1. DistributionCheck

• set -

• refDistribution -a reference distribution the original set will be calculated by and
then ch

CHECK DistributionCheck ON LIST data(val)

WITH refDistribution(from , to , bin , perc):

LIST cnt := SELECT COUNT (*) FROM data;

LIST bindata := SELECT VAL2BIN(val , refDistribution) ROLE

↪→ bval

FROM data;

LIST bincnt := SELECT bval ROLE bval , COUNT (*) ROLE acnt

FROM bindata

GROUP BY bval;

LIST hist :=

SELECT bin , perc , NVL(acnt , 0) ROLE acnt

FROM bincnt RIGHT JOIN refDistribution ON bval = bin;

LIST score1 :=

SELECT (acnt - cnt * perc) * (acnt - cnt * perc) /

(cnt * perc) ROLE cell

FROM hist;

90

A. Rulecatalog

LIST score :=

SELECT SUM(cell) ROLE score FROM score1;

RETURN LIST score;

END

A.3.2. ARCheck

An AR check is a time series check that models the time series using an AR model.
The basic formula is as follows:

ŷt = yt−1a1 + · · ·+ yt−nan (A.1)

CHECK ARCheck ON LIST ts(time , value) WITH LIST arparam , sd

↪→ :

LIST ts := SELECT * FROM ts ORDER BY time;

FOR t := LENGTH(arparam)+1 TO LENGTH(ts):

yt := 0;

FOR i := 1 TO LENGTH(arparam):

yt := yt + ts[t-i]. value * arparam[i];

END

score := ABS(ts[t].value - yt) / sd;

RETURN score ROLE score , ts[t].time ROLE identifier;

END

END

A sample source for the parameter will look like this:

SOURCE ARParam TYPE LIST CONST ROLES (ar):

.50,

.25,

.1275

END

A time series data source might look like this:

SOURCE TimeSeriesSales TYPE LIST QUERY

ROLES(time_id: IDENTIFIER):

DATABASE ts NATIVE

SELECT ’’ || week || ’-’ || day as time_id ,

sales_volume

FROM time_series_sales

END

With these source definitions, we can call the check as follows:

91

A. Rulecatalog

ACTION ARCheckTsSales:

EXECUTE ARCheck ON TimeSeriesSales(time_id , sales_volume)

WITH ARParam , 10

RESULT IN WARNING ABOVE 2 AND ERROR ABOVE 3

END

A.3.3. CubeCheck

CHECK CubeCheck ON LIST cube(time , dim , metric)

WITH LIST cubemodel:

RETURN LIST CUBESCORE(cube , cubemodel);

END

92

Bibliography

[1] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational data: A survey. The
VLDB Journal, 24(4):557–581, Aug. 2015.

[2] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton, R. Ramakr-
ishnan, and S. Sarawagi. On the Computation of Multidimensional Aggregates.
In Proceedings of the 22th International Conference on Very Large Data Bases,
VLDB ’96, pages 506–521, San Francisco, CA, USA, 1996. Morgan Kaufmann
Publishers Inc.

[3] C. C. Aggarwal. Outlier Analysis. Springer New York, 1 edition, 2013.

[4] P. Atzeni, F. Bugiotti, and L. Rossi. Sos (save our systems): A uniform program-
ming interface for non-relational systems. In Proceedings of the 15th International
Conference on Extending Database Technology, EDBT ’12, pages 582–585, New
York, NY, USA, 2012. ACM.

[5] C. Batini, D. Barone, F. Cabitza, and S. Grega. A Data Quality Methodology for
Heterogeneous Data. International Journal of Database Management Systems,
3(1):60–79, Feb. 2011.

[6] C. Binnig, R. Rehrmann, F. Faerber, and R. Riewe. Funsql: It is time to make sql
functional. In Proceedings of the 2012 Joint EDBT/ICDT Workshops, EDBT-
ICDT ’12, pages 41–46, New York, NY, USA, 2012. ACM.

[7] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional func-
tional dependencies for data cleaning. In 2007 IEEE 23rd International Conference
on Data Engineering, pages 746–755. IEEE, 2007.

[8] L. Bravo, W. Fan, F. Geerts, and S. Ma. Increasing the expressivity of con-
ditional functional dependencies without extra complexity. In 2008 IEEE 24th
International Conference on Data Engineering, pages 516–525. IEEE, 2008.

[9] P. Buneman, M. Fernandez, and D. Suciu. Unql: a query language and algebra for
semistructured data based on structural recursion. The VLDB Journal, 9(1):76–
110, Mar 2000.

[10] J. Cheney, S. Lindley, and P. Wadler. A practical theory of language-integrated
query. In Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’13, pages 403–416, New York, NY, USA, 2013.
ACM.

93

Bibliography

[11] F. Chiang and R. J. Miller. Discovering data quality rules. Proceedings of the
VLDB Endowment, 1(1):1166–1177, 2008.

[12] G. Endler, P. K. Schwab, A. M. Wahl, J. Tenschert, and R. Lenz. An architecture
for continuous data quality monitoring in medical centers. MEDINFO, 2015.

[13] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering Conditional Functional De-
pendencies. IEEE Transactions on Knowledge and Data Engineering, 23(5):683–
698, May 2011.

[14] S. Feuerstein and B. Pribyl. Oracle pl/sql Programming. ” O’Reilly Media, Inc.”,
2005.

[15] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv,
J. Ullman, V. Vassalos, and J. Widom. The tsimmis approach to mediation: Data
models and languages. Journal of Intelligent Information Systems, 8(2):117–132,
Mar 1997.

[16] M. Gupta, J. Gao, C. Aggarwal, and J. Han. Outlier Detection for Temporal Data:
A Survey. Knowledge and Data Engineering, IEEE Transactions on, 26(9):2250–
2267, Sept. 2014.

[17] F. Heine. Outlier Detection in Data Streams Using OLAP Cubes. In New Trends
in Databases and Information Systems, Communications in Computer and Infor-
mation Science, pages 29–36. Springer, Cham, Sept. 2017.

[18] F. Heine, C. Kleiner, A. Koschel, and J. Westermayer. The Data Checking Engine:
Complex Rules for Data Quality Monitoring. 2014.

[19] F. Heine and M. Rohde. PopUp-Cubing: An Algorithm to Efficiently Use Iceberg
Cubes in Data Streams. In Proceedings of the Fourth IEEE/ACM International
Conference on Big Data Computing, Applications and Technologies, BDCAT ’17,
pages 11–20, New York, NY, USA, 2017. ACM.

[20] R. J. Hyndman and G. Athanasopoulos. Forecasting: principles and practice.
OTexts, 2018.

[21] R. Lawrence. Integration and virtualization of relational sql and nosql systems in-
cluding mysql and mongodb. In 2014 International Conference on Computational
Science and Computational Intelligence, volume 1, pages 285–290, March 2014.

[22] X. Li and J. Han. Mining approximate top-k subspace anomalies in multi-
dimensional time-series data. In Proceedings of the 33rd international conference
on Very large data bases, pages 447–458. VLDB Endowment, 2007.

[23] D. Loshin. Rule-based data quality. In Proceedings of the eleventh international
conference on Information and knowledge management, pages 614–616. ACM,
2002.

94

Bibliography

[24] J. E. Olson. Data Quality: The Accuracy Dimension. Morgan Kaufmann, Jan.
2003.

[25] L. L. Pipino, Y. W. Lee, and R. Y. Wang. Data Quality Assessment. Commun.
ACM, 45(4):211–218, Apr. 2002.

[26] J. Rith, P. S. Lehmayr, and K. Meyer-Wegener. Speaking in tongues: Sql access
to nosql systems. In Proceedings of the 29th Annual ACM Symposium on Applied
Computing, SAC ’14, pages 855–857, New York, NY, USA, 2014. ACM.

[27] S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Biessmann, and A. Graf-
berger. Automating large-scale data quality verification. Proceedings of the VLDB
Endowment, 11(12):1781–1794, Aug. 2018.

[28] S. Sobieski and B. Zieliński. Using maude rewriting system to modularize and
extend sql. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC ’13, pages 853–858, New York, NY, USA, 2013. ACM.

[29] Y. Wand and R. Y. Wang. Anchoring Data Quality Dimensions in Ontological
Foundations. Commun. ACM, 39(11):86–95, Nov. 1996.

[30] R. Y. Wang, V. C. Storey, and C. P. Firth. A framework for analysis of data quality
research. IEEE transactions on knowledge and data engineering, 7(4):623–640,
1995.

[31] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Computing iceberg cubes
by top-down and bottom-up integration. In Proceedings of the 29th international
conference on Very large data bases-Volume 29, pages 476–487. VLDB Endow-
ment, 2003.

[32] C. Zhang and J. Xu. A unified sql middleware for nosql databases. In Proceedings
of the 2018 International Conference on Big Data and Computing, ICBDC ’18,
pages 14–19, New York, NY, USA, 2018. ACM.

95

	Introduction
	Data Quality
	A DSL for DQ monitoring
	Overview

	DSL
	Requirements
	Concepts
	Basic Design Decisions
	Data Model
	Sources
	Checks
	Actions
	Roles
	Return values

	DSL Description
	Expressions
	List expressions
	Built-in Methods
	Sources
	Checks
	Actions

	Environment
	Optimization
	Evaluation

	Complex DQ Rules
	Parametrization
	Univariate Time Series
	Implementation
	Seasonal time series

	Multidimensional Data
	DSL extensions
	Profiling
	Running the check

	Profiling
	Introduction
	Profiling, Statistics and Rule Generation
	Profiling Methods
	NOT NULL profiling
	Range profiling
	Foreign key dependencies
	Time series profiling
	Cube profiling

	Design
	Architecure
	ProfilingMethod
	ProfilingResult
	API

	Feedback Loop
	Return values from checks
	Rule types
	Re-profiling for individual actions
	Re-profling for NOT NULL
	Re-profiling for RangeCheck
	Re-profiling for percentage NOT NULL
	Re-profiling for time series
	Re-profiling for cubes

	Related Work
	Existing solutions for data quality monitoring
	Individual implementation aspects
	Advanced rules and profiling
	Alte version

	Conclusion
	Open Issues

	Appendix
	Rulecatalog
	Column property checks
	NotNullCheck
	RangeCheck
	BoundaryChecks
	PatternCheck
	ContainsCheck
	NestedDocumentValueCheck

	Structure analysis checks
	QuantityCheck
	SumCheck
	UniqueCheck
	Referential Integrity
	Functional Dependency

	Value checks
	DistributionCheck
	ARCheck
	CubeCheck

