
Development Of An Android Usage

Study System

Master Thesis

Tobias Ruhe

September 2012

Participants

1st examiner

Prof. Dr. rer. nat. Josef von Helden
Ricklinger Stadtweg 120
30459 Hannover

E-Mail: josef.vonhelden@fh-hannover.de
Tel.: +49 511 9296-1500

2nd examiner

Ingo Bente M.Sc.
Ricklinger Stadtweg 120
30459 Hannover

E-Mail: ingo.bente@fh-hannover.de
Tel.: +49 511 9296-1828

Author

Tobias Ruhe
Wilhelm-Bluhm-Str. 36
30451 Hannover

E-Mail: tobias.ruhe@stud.fh-hannover.de

Thesis Declaration
I declare on oath that I completed this thesis on my own and that information which
has been directly or indirectly taken from other sources has been noted as such. Nei-
ther this, nor a similar thesis, has been published or presented to an examination
committee.

Hannover, September 30, 2012
Tobias Ruhe

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Structure of paper . 2

1.3 Typographic conventions . 2

2 Smartphone usage and market share 3
2.1 Overview . 3

2.2 Smartphone sales market . 3

2.3 Smartphone usage . 4

2.4 The Android plattform . 5

2.4.1 The software stack . 5

3 Development of an Android usage study system 9
3.1 Requirements . 9

3.1.1 Requirements for the client application 10

3.1.2 Requirements of webservice . 11

3.2 Approaches for an Android usage study system 12

3.2.1 Data selection . 12

3.2.2 Data model . 13

3.2.3 Supported platforms . 16

3.2.4 Transport of data . 16

3.2.5 Storage of data . 16

3.3 Solution . 20

3.3.1 Domain-speci�c metamodel . 20

4 Design and implementation of software components 47
4.1 Architecture of the Android usage study system 47

4.2 Client application . 48

4.2.1 User interface . 49

4.2.2 Developement enviroment . 50

4.2.3 Delivering and installing . 50

4.3 Webservice . 52

4.3.1 Deploying . 53

4.3.2 Receiving data . 53
4.3.3 Storing the �les . 53

5 Analysis of collected data 55
5.1 Preliminary action . 55

5.1.1 Merging databases . 55
5.1.2 Droping out useless data sets 56
5.1.3 Repairing broken hierarchies . 56

5.2 Exemplary analysis . 56
5.2.1 Overall stats . 56
5.2.2 Tra�c statistics from WiFi adapter 56
5.2.3 Scanned WiFi access points . 57
5.2.4 App usage . 61

6 Conclusion 63
6.1 Summary . 63
6.2 Experiences . 63
6.3 Future work . 64

A Android system permissions and protection levels 71

B Webservice for an Android usage study system 75

Chapter 1

Introduction

1.1 Motivation

Over 400 millions smartphones were sold worldwide in the 2nd quarter[Gar12] 2012.
At the time of writing, there are 500 millions activated Android devices, about one
million devices are added every day1. The success of modern smartphones can be
explained by regarding their capabilities. With lot of sensors built into the phone and
the ability to upgrade the functionality by 3rd party applications, the device is not
anymore limited to telephony and SMS messaging. Instead, the users can do a lot of
more tasks with their phones. Meanwhile the users do also sensitive tasks like payment
transactions with their smartphones. As a consequence, the mobile platforms are a
worthwhile destination for malware programmers.

The ESUKOM 2 project deals with real-time network analysis of correlated meta-
data. The emergence of smartphones in business enterprise networks introduces new
security problems. One of the key challenge is to encounter new threats caused by
smartphones. In order to recognize an anomaly in smartphone activity, it must be
distinguish between normal and abnormal behavior. The IDS3 used in the project has
to be trained with real life data to enable realistic assessments about threats.

The goal of this paper is to �nd out how ordinary users use their smartphones. To
achieve this objective an architecture for collecting, storing and analyzing data on the
Android platform is introduced. After �nishing the development, a �eld test is run
with some volunteers in order to make statements with the collected data. Further-
more the data is used to train the IDS from ESUKOM project. A similar project like
this thesis is the Device Analyzer4 by the University of Cambridge, but the scope is
di�erent from this paper. The intention there is not security related. Instead, improv-
ing next generation smartphones on basis of user behavior is focused.

1http://news.cnet.com/8301-1035_3-57461870-94/android-activations-reach-1-million-per-day/
2http://www.esukom.de/
3Intrusion Detection System
4http://deviceanalyzer.cl.cam.ac.uk/

1

This paper is done within the Trust@FHH 5 research group and is related to the
ESUKOM project.

1.2 Structure of paper

The paper is separated into the following sections:

Smartphone usage and market share
At �rst an overview of todays mobile market shares is given and the usage of todays
smartphone users is discussed. Afterwards, the Android platform is examined.

Development of an Android usage study system
At �rst, the requirements for an Android usage study system are established. Some
approaches to meet the requirements are discussed. Finally, the best solutions are
chosen.

Design and implementation of software components
The software components required for developing an Android usage study system will
be designed and implemented. This also includes the deployment of the software.
Another object is the �eld test running with the developed software afterwards.

Analysis of collected data
With the data collected during �eld test, some exemplary analyses will be done.

Conclusion
A summary and the experiences from development and the �eld test are given. The
paper �nishes with regarding future prospects.

1.3 Typographic conventions

The following typographic conventions are used:

italic: Keywords, technologies
teletype: Script-, class- and �le names

5https://trust.inform.fh-hannover.de/

2

Chapter 2

Smartphone usage and market

share

2.1 Overview

In this chapter an overview of the smartphone market is given and the purposes
user employ their devices for are examined. Afterwards a survey into the Android
plattform is carried out. At the end of this chapter the use cases and requirements
for an Android usage study system is discussed.

2.2 Smartphone sales market

The market share of smartphones with Android as the operating system is dominant:
64.1 % of all smartphones sales in Q2/2012 are shipped with Android preinstalled.

In comparison with the year before, the trend continues to rise upwards. While iOS
has a gain of 0.6 percent points, the Android platform circulation has grown by 20.7
percent points. Android devices sell more than twice as much as iOS phones. To-
gether, Android and iOS device make up 82.9 percent of all worldwide smartphone
sales.

The huge spread of the Android platform and the willingness of the user to do sen-
sitive tasks such as payment transactions or proccessing customer data on smart-
phones piques the interest of malware programmers. Considering the frequent mal-
ware reports from the two well known antivirus companies (F-Secure and Kasper-
sky Labs), in Q2/2012 more than 40 new families of malware were detected in the
wild[Lab12b][Lab12a]. Starting in Q1/2011 with a detection rate of 10 new families
and after reaching a peek of 52 in Q3/2011, the rate keeps growing continously in 2012
until now. The malware developer mostly focus on two operating systems (Android,
iOS), since the infection rate is proportionaly large to the spread of the system and
this leads to higher pro�ts.

As the proverb goes: One man's meat is another man's poison. The rapid evolution

3

43,4%

18,2%

22,1%

11,7%

1,9%
1,6% 1,0%

Android iOS Symbian Blackberry Bada Microsoft Others

64,1%

18,8%

5,9%

5,2%

2,7% 2,7%
0,6%

Figure 2.1: The smartphone marketshares for the years 2011 and 2012 (quarter 2)

in the smartphone market leads to new challenges in security. In order to be able
to develop counter measures against these threats, a deeper look into common ways
people use their smartphones today is needed.

2.3 Smartphone usage

Up until a few years ago, the capabilities of telephony devices were limited. Small
displays, low CPU power and a small amount of memory restricted the phone to
main use cases: telephony and SMS messaging. Today most devices come with a lot
of features: a big display, multi core CPUs and a lot of memory and storage space.
Also, a lot of additional hardware is built into modern devices, like cameras and GPS
sensors. The system can be enhanced by installing additional applications from 3rd
parties. Thus, devices are not limited to the classic usage anymore.

The O2-Company in the UK released their All About You Report [O212] study in
2012. The study makes statements about how much time smartphone users spend on
di�erent tasks. The result clearly places telephony and SMS writing at lower positions.
With a big distance the users mostly employed their phones for other purposesw like
browsing the internet or social networking.

On average, a smartphone user is spending two hours a day using the smartphone.
Smartphones are not only used in private life. Also, mobile phone usage has become a
big part of everyday business. The main uses are driving directions (GPS), accessing
customer data and last minute internet research[WC12].

4

Figure 2.2: The top 10 use cases of smartphone usage. Calling and text messaging
reside only on lower positions.

In summary, smartphones are a substantial part of modern people's life. Many tasks
can easily done by non-technically-inclined people. Tasks that required workstation
systems only years ago can nowadays be performed anywhere on mobile devices.

2.4 The Android plattform

Since the introduction of the Android platform, there have been a lot of new releases.
Examining the version distribution of the Android operating system, there are almost
all older versions are still in circulation. With more than 70 percent, the android
2.x platform is the top distibuted version, where the 2.3 platform (aka Gingerbread)
with 57.3 percent is dominating1. The latest distributions (versions >= 4.x) are slowy
gaining relevance, while old versions below 2.x are mostly irrelevant with a spread rate
of 0.6 %.

There exist some other Android ports in the wild, which are developed by a community
or 3rd party companies. One of the most popular derivative is CyanogenMod2.

2.4.1 The software stack

The Android system is not only an operating system, but a whole software stack
composed of di�erent layers (2.4).

1http://developer.android.com/about/dashboards/index.html
2http://www.cyanogenmod.com/

5

0,2% 0,4% 3,7%

14,0%

57,5%

2,1%

20,9%

1,2%

Distribution of android plattforms

Cupcake

Donut

Eclair

Froyo

Gingerbread

Honeycomb

Ice Cream Sandwich

Jelly Bean

Figure 2.3: The distribution of di�erent Android versions (September 2012).

Version Codename API Distribution (%)
1.5 Cupcake 3 0.2

1.6 Donut 4 0.4

2.1 Eclair 7 3.7

2.2 Froyo 8 14

2.3 - 2.3.2 Gingerbread 9 0.3

2.3.3 - 2.3.7 Gingerbread 10 57.2

3.1 Honeycomb 12 0.5

3.2 Honeycomb 13 1.6

4.0 - 4.0.2 Ice Cream Sandwich 14 0.1

4.0.3 - 4.0.4 Ice Cream Sandwich 15 20.8

4.1 Jelly Bean 16 1.2

Table 2.1: Versions and API level of Android platform

Linux Kernel
The underlying system of every Android version is the Linux operating system. The
drivers for the device reside there. Scheduling, process and memory management and
other tasks of an operating system are executed here.

Libraries
Android includes a lot of libraries known from other conventional Linux operating
systems. This covers networking components such as SSL3, SQLite (an embedded
database system) or OpenGL.

3Secure Socket Layer

6

Figure 2.4: The android software stack. Source:[sou]

Android runtime
The Java programming language is the choice of coding for Android applications.
In order to run the apps, a virtual machine (VM) named Dalvik Virtual machine is
included in Android. Before interpreting and executing the application, the Java byte
code is translated to the Dalvik Executable �le format (�les are ending with .dex).

Application framework
Above the libraries and runtime layers, an application framework is built. The devel-
oper uses the classes and methods from here to build applications.

Applications
On top of the software stack, the applications are found. They use the provided
libraries for accessing and working with the Android system. All applications are
written in Java, but there can also be additional native libraries included, written in
C.
Applications can be obtained from the o�cal Google Play Store4. In any Android
system, there exists an application to accomplish this task. Some manufactures and
3rd parties have their own market infrastructure to provide additional software.

4https://play.google.com/

7

8

Chapter 3

Development of an Android usage

study system

After introducing the Android platform in the previous chapter, the development of an
Android usage study system is described in the following. At �rst, the requirements
for the client application and the remote webservice are declared. Afterwards, possible
approaches are discussed and the best solution is chosen.

3.1 Requirements

Android

Usage

Study

System

A
nal

yz
e C

ollect

S
to

re
Transport

Figure 3.1: The assignments of an Android usage study system

The Android usage study system can roughly be divided into four assignments: Col-
lecting, storing, transporting and analyzing the data. Each use case can potentially

9

a�ect both the client and the server. Some combinations will not be considered (eg.
analyzing data on client side), because they are not in the focus of this paper.

3.1.1 Requirements for the client application

In the following the requirements for the Android client are determined.

Collecting

� The app should measure as much information as possible, to cover the most use
cases. The app must collect all necessary information that is available for the
used API level. That means, if a device does not support a speci�c feature, all
other available features are still collected.

� Data collection should be possible at any time. Features can be measured once
or repeatedly at a given time or period. Some features are collected if speci�c
events occur (eg. the user receives an incoming phone call).

� The users do not have access to the internet at all times. Collected data can't
be sent at any time, so storing it temporarily on the device is a must.

� The measurement and upload times should be adjustable.

Storing

� An appropriate data model for storing, processing and analyzing the data must
be introduced. It should be easy to query, navigate and serialize the data.
Processing these tasks should be �nished in appropriate time.

� The data model must be able to handle di�erent kinds of measurement data.
� As mentioned in the beginning (1.1) of this paper. One goal of this paper is to

obtain data from real persons to train an IDS. There, anomalies in smartphone
usage should be detected. It should be considered to use the same model, if
possible, to avoid the transformation from other data models.

� Because a smartphone has limited capabilities in storage, the space the collected
data uses should be as small as possible. After successful upload, the data should
be erased on the device.

� Information should be continuously collected by as many participants as possi-
ble. Some analyses may require constant measurement of speci�c features. To
achieve usable results for analysis, appropriate measurement intervals should be
chosen.

� The user can make a copy of all currently stored features to a chosen path,
without removing the original database.

Transport

� All data must be transmitted over an IP-networked environment.
� The upload process can be automatically performed by the application or can

be manually triggered by the user. If the collected data is not successfully
transmitted, it is not erased on client side.

10

� The transmission protocol must be encrypted and secure cryptographic stan-
dards must be used.

� The user can set up new network credentials.

System

� The application should run on the most popular Android platforms. Versions
with low distribution rates can be ignored.

� The application should not decrease the smartphone's performance signi�cantly.
Also the battery power consumption should be considered.

� After rebooting, the app should start without the interaction of the user and
continue its work in the background.

� The application should run without the intervention of user. This includes
collecting and the automatic upload of data.

Privacy

� The identity of the user must be protected. To ensure that the user cannot be
tracked by analyzing the data. All sensitive data (eg. the IMEI or telephone
numbers) must be anonymized before storing. For cryptographic operations such
as hashing or encrypting, well known algorithms with su�cient security must
be used.

� The data must not be accessible to other apps running on the smartphone.
� The user has to have full control about which features are collected and when

the upload mechanism is triggered. The speci�c preferences should be easily
accessible and intuitive to use.

� The collected data will never be given to other people than members of Trust@FHH.
After the project has ended, the data will completely erased.

User interface
The user should have the ability to

� see what data is being collected
� enable/disable speci�c features
� change preferences of all measurement and upload intervals. Also network set-

tings for upload host and the paths for local storage must be con�gurable.
� manually upload data and save all available features to local storage.

Additionally the application should display a boot screen to indicate that the app is
starting. The user should see that the application is up and running in background
through a noti�cation. The client only sends features to the server, but is never
retrieving features.

3.1.2 Requirements of webservice

Some requirements made in 3.1.1 a�ect the webservice as well (eg. the transport part).

11

� The remote interface should be easily accessible. To achieve a small contact
surface for remote attackers, working with a limited set of o�ered functionality
and parameters is a must.

� The availability must be guaranteed. The participant users can upload their
data at any time. If possible, the host should be up at all times.

� The development and integration should be as easy and fast as possible. Well
known technologies such as application servers and frameworks could be used
to achieve this purpose.

� Incoming data must be validated and the payload (database) must be checked
for consistency.

� The service must accept data from multiple clients and has to ensure that a
previously uploaded database can not be overwritten by a new upload.

3.2 Approaches for an Android usage study system

In this chapter approaches to solve the requirements compiled in 3.1.1 and 3.1.2 are
discussed. At �rst, a de�nition of which data can be collected is made and a proper
data metamodel for handling and storing is introduced. Afterwards, the architecture
for the client and the server is developed. It is de�ned how data is collected and stored
on the Android device and measurement times are selected. The transport mechanism
and webservice interfaces are introduced. To make analysis on the collected data easy,
an approach to store the received data in an appropriate format is established. The
user's security is fundamental, privacy and encryption methods used in the applica-
tions are examined. Finally, the requirements from the previous chapter are compared
to the developed concept.

3.2.1 Data selection

As mentioned in 2.3, users accomplish a lot of di�erent tasks with their device. In
order to achieve a good coverage of these tasks, it is required to de�ne which data
should be collected. The following set was developed:

Basic Information Overall information about the device and the system. Covers
device and system characteristics such as model identi�er or kernel version.
System preferences should also be considered.

Network stats The network activity. This includes WiFi, 3G and bluetooth connec-
tions, if such an adapter is available on the device. The amount of connections
and incoming and outgoing tra�c could be analyzed. For WiFi adapters espe-
cially, information about seen and connected access points could be considered.

Telephony The amount and duration of incoming and outgoing calls should be col-
lected. Additionally, the change of a GSM cell could be observed.

12

Messaging The messaging activity. Mostly this means incoming and outgoing SMS
messages, but this could also be email messages or other types of messaging (eg.
Skype).

Application The applications which are installed on the device are identi�ed. The
required and requested permissions are checked. The installation, update and
removal of apps is noted.

Sensors The usage of sensors should be recognized. This covers cameras, bluetooth
and WiFi adapters, GPS sensors and other types.

Storage Information about free and used space on in- and external storage. The
insertion and removal of external SD-cards should also be considered.

CPU and memory The CPU load and memory usage on the system is observed.
Statistics for the whole system and individual apps are considered.

Power The power consumption behavior. The battery status and plugged in chargers
should be recognized.

The available feature set depends on device capabilities and the used Android API
version.

3.2.2 Data model

A deeper look into the used metamodel for the correlation engine[WSW+12] is given
to decide if it is appropriate.

Abstract metamodel

The data model is a subset of the abstract model evaluated in the research project
ESUKOM [WSW+12]. The original model consists of �ve component groups: Core,
Context-related, signature, anomaly detection and policy components. Only the core
and the context-related components are of special interest; the other three components
are used only by the correlation engine. In the following, the �rst two are discussed.
With this abstract metamodel, model instances are developed to match the given
scenario.

Core components
This group consists of components which can be used to describe arbitrary metadata.
In our use case the phone data that will be collected is set up with this model.

Feature
A feature describes one characteristic for an arbitrary domain model. Depending
on the scenario, features could map di�erent purposes. For example, following our
scenario, this could be basic system information (kernel-version, screen properties,

13

Context-related components

Core components

Category Feature

ContextParameter ContextParamType

FeatureType

belongs to one

belongs to

is type of

has set of

is type of

- id

- value

- desc

- subcategories

- parent

- id

- value

- desc

- type

- ctx-params

- id

- name

- type

- value

- id

- name

Figure 3.2: Subset of the domain independent abstract metamodel

installed apps) or something like battery and ip-tra�c statistics. One feature consists
of a single key/value pair, a quali�ed type and belongs to at least one category. The
�elds have the following meaning:

id An identi�er describing the feature

type De�nes the type of the value. The value can be quantitative (an integer), qual-
i�ed (one value from a prede�ned pool of values) or arbitrary (email-address).

value A value with respect to the type de�nition

category Each feature belongs to one category

ctx-params Optional set of parameters. They can be used to describe arbitrary
metadata, which does not directly belong to the feature (such as timestamp or
GPS position).

Category
Each category encapsulates a set of features, which belong semantically to each other.
Categories can have subcategories and a parent category. With the ability to nest
categories in each other, a tree structure can be modeled. There, the categories are
represented by inner nodes, while the features are leaf nodes (�gure 3.3). The �elds
are:

id An unique identi�er for a speci�c domain

subCategories Optional set of subcategories

parent Optional parent category

14

Feature

#2

Feature

#3

Feature

#1

Subcategory #1a

parent: root category

subcategories: 1

Subcategory #1b

parent: root category

subcategories: 0

Root category

parent: -

subcategories: 2

Subcategory #2a

parent: subcategory #1a

subcategories: 0

Figure 3.3: The abstract metamodel can be used to model a tree hierarchy. The bidi-
rectional relation symbolizes that a category knows his parent and subcategories. The
unidirectional relation between a feature and his category symbolizes that categories
have no reference to their features. However, a feature knows his category.

Context related components
De�nes context relevant metadata, which does not directly belong to the measured
feature.

Context-Parameter
A single value object with a type de�nition. The �elds are:

value a single value

type the type of the value (domain speci�c)

As an example, a Context-Parameter could be a timestamp or a GPS-position.

Bene�ts
There are some bene�ts to using such an abstract metamodel:

� The same metamodel can be used to model di�erent domains.
� The model does not depend on a certain technology. There are no dependencies

to external systems.
� The model can easily be adapted to match new types of metadata.

The data model ful�lls the requirements made before. It is easily navigable and can
handle di�erent kinds of data. It can easily be adopted, so there is no need to develop
a new model.

15

3.2.3 Supported platforms

Higher API levels of the Android system support a richer feature set than lower
versions. Supporting lower APIs means to omit some possible measurements; working
with higher APIs locks out older devices. A good compromise is to support the
versions most prevalent.

3.2.4 Transport of data

A secure channel over IP-network is considered. Working with a webservice means the
HTTP1 protocol is involved. This protocol in combination with SSL can be used as a
secure and standardized way to transmit data. Using raw sockets on top of TCP/IP
requires the development of an exchange mechanism, which can be problematic and
time consuming. APIs for HTTP-handling are included in Android, even in lower
versions.

3.2.5 Storage of data

The mapping of the data model depends on the speci�c model. For complex data
structures working with object oriented databases is considered. For simpler data
structures, a �at �le or relational database is a better approach. If possible the same
storage format is used on client and server side. For the object oriented approach, the
db4o2 can be used, as it is also used by the ESUKOM project. A �at �le could be in
CSVComma seperated values format.

Database for objects - introducing db4o

When it comes to serialisation of complex datastructures, the use of an object ori-
ented database management system (OODBMS) should be considered. In contrast
to relational database systems (RDBMS), the developer does not need to care about
assembling and dissasembling of objects. No manual mapping is needed, the applica-
tion's data scheme is also the database scheme. This saves coding time resulting in
fewer lines of code and the (de-)serialisation of objects is faster. As a consequence less
CPU time is used. Also, the navigation of complex graph structures is easier and more
intuitive than in relational databases. There are some disadvantages too: the database
structure is more complex than in relational tables. Object oriented databases are not
widespread, resulting in less support of good user tools. One of the oldest companies
in the OODBMS-market is the Versant Company3. Their major product is the db4o
Object Database, a leightweight open source OODBMS-engine for Java and .NET
platforms. The product is dual licensed: GPL4 for non-commercial use and a license
for commercial use is available. Some advantages:

1Hyper Text Transfer Protocol
2Database for Objects
3http://www.versant.com/
4http://www.gnu.org/copyleft/gpl.html

16

� Each database is stored in one single �le.
� The library is build modularly with a small footprint and it is embeddable. The

usage in restricted environments with limited resources such as smartphones can
be accomplished. db4o supports the Android platform.

� All con�gurations are done in application code. This makes the database more
portable.

� Querying and storing are done with a few lines of code.

In the following an example for using the db4o database is given. The complete db4o
reference documentation, API and tutorials can be found at Versant's community
pages5.

Examples
To demonstrate the capabilities of db4o, some examples with the Java library are
shown. For storing and querying the database, a simple entity class Person with two
member variables and corresponding getter and setter methods is used

1 class Person {
2 private St r ing name ;
3 private St r ing age ;
4

5 Person (St r ing n) {
6 this . name = n ;
7 }
8 }

Listing 3.1: A simple entity class used for examples

Prequisites / Installing
A Java SDK 1.1.x to 1.6 is required to run a db4o database. Before developing an appli-
cation with db4o, the libraries6 have to be unpacked and the included db4o-x-y.jar
�le must be extracted (the x in �lename is replaced with the db4o version number and
y names the module. With module all, all components from db4o are included.).
The application has to include this JAR-�le in the class path.

Con�guration
As mentioned above, the con�guration is completly done in application code.

1 EmbeddedConfiguration conf = Db4oEmbedded . newConf igurat ion () ;
2 conf . common() . add (new AndroidSupport ()) ;

Listing 3.2: A simple con�guration for db4o

A new con�guration object from type EmbeddedConfiguration is created through
a static method in Db4oEmbedded. Android support is added to the con�guration

5http://community.versant.com/documentation.aspx
6http://community.versant.com/Downloads/db4o.aspx

17

by using the add method in common().

Creating / Opening
To open a database, the Db4oEmbedded.openFile() method can be used. A
con�guration object and the target �le are used as parameters. The database resides
in one �le only. If the �le does not exist in the �le system, a new one is created.

1 ObjectContainer db = Db4oEmbedded . openFi l e (conf ,
" database . db4o") ;

Listing 3.3: Opening or creating the database

Storing
Storing is done in a single line of code. Here, objects from type Person are saved to
the database.

1 db . s t o r e (new Person (" A l i c e ")) ;
2 db . s t o r e (new Person ("Bob")) ;

Listing 3.4: Opening or creating the database

Querying
For querying the database, three existing possibilities can be used in db4o:

� Queries by example
� Named Queries
� Native Queries

These methods are di�erent in complexity and performance.

1 Person a l i c e = new Person (" A l i c e ") ;
2 a l i c e . setAge (33) ;
3 ObjectSet<Person> persons = db . queryByExample (a l i c e) ;
4 // I t e r a t e through a l l found in s t ance s
5 for (Person p : persons) {
6 // do something wi th person o b j e c t
7 }

Listing 3.5: Query by Example. The result set contains all objects named Alice with
age equal to 33

If using Queries by example an example object must be created earlier. The db4o
engine searches for objects that look like the sample object. The engine checks all
�elds from the source object against the non-null �elds of the objects in the database.
If an object has exactly the same value(s), it is added to the search result set.

1 ObjectSet<Pi lo t> persons = db . query (new Predicate<Person >() {
2 @Override
3 public boolean match (Person person) {
4 return (person . getName () . equa l s (" A l i c e ") &&
5 person . getAge () == 33) ;
6 }
7 }) ;

18

8 // I t e r a t e through a l l found in s t ance s
9 for (Person p : persons) {

10 // do something wi th person o b j e c t
11 }

Listing 3.6: Native query

Native queries are written directly in the host language. They are type save and are
checked during compile time. The query interface does not rely on string literals.
With this type of query language a Predicate is used to set the query parameters.
The user must overwrite the match() method to accomplish this task.

1 Query query = db . query () ;
2 query . c on s t r a i n (Person . class) ;
3 query . descend ("age") . c on s t r a i n (33)
4 . and (query . descend ("name") . c on s t r a i n (" A l i c e ")) ;
5 ObjectSet<Object> persons = query . execute () ;
6 // I t e r a t e through a l l found in s t ance s
7 for (Person p : persons) {
8 // do something wi th person o b j e c t
9 }

Listing 3.7: SODA Query API

TheSODA Query API is a low level API for operating directly on nodes of the query
graph. Strings are used for identifying �elds, so no type safety nor compiler checks are
possible. Db4o also uses the SODA Query API as the internal query mechanism. As
a result, all queries from other methods are transformed to SODA-queries by db4o. It
is the most �exible mechanism for querying db4o databases. At �rst an instance of a
Query-object is created. Afterwards the constraints can be set by navigating through
the hierachy.
The bene�ts of db4o are:

� No object transformation is required before storing. The entity objects with
their references to other entities are stored transparently, without the need to
parse out the data.

� The correlation engine from ESUKOM works with db4o to analyze the data.
If data is stored in db4o from the beginning, there is no need to transform the
data again.

� db4o is compatible with the Android platform. The available libraries for Java
work �ne on the Android platform7 as well.

� The database o�ers multiple facilities to query the object hierarchy program-
matically: Named Queries, Native Queries and Queries by example. More infor-
mation about these techniques is available in the o�cial db4o documentation.
There also exist plugins for the Eclipse IDE and Visual Studio 2010 to build
queries and browse the object hierachy from within the IDE. These plugins are
called Object Manager Enterprise (OME).

7http://www.db4o.com/Android/default.aspx

19

3.3 Solution

In this section decisions for the Android usage study system are made. As an appro-
priate data model, the abstract metamodel from ESUKOM project is adopted (3.2.2).
Normally, collected data must be transformed to match the engines data model. This
step can be di�cult and time expensive if the data structure is su�ciently complex.
Instead, if using the same model, the exchange should be easily accomplished. This
makes the data migration simpler. It meets all the requirements: Di�erent kinds of
measurement data can be modeled and the resulting data set can easily be navigated.
The minimal supported Android platform are 2.2 and above, as this are the most
popular versions.
For storing on client and server the object oriented approach is chosen and the same
datastructure as in the correlation engine is used (db4o). The db4o database engine
can be used with ordinary systems (workstations or server systems) and is also appli-
cable for the Android platform.
For the transport, the clients send the data through a SSL secured HTTP connec-
tion. The webservice accepts POST requests with the raw binary data as payload.
This seams the simplest solution for transmitting data over an IP network. Android
comes with good support to handle HTTP sessions encrypted with SSL. This type of
werbservice can be easily developed with the Java platform and Netbeans IDE.

3.3.1 Domain-speci�c metamodel

Based on the abstract metamodel established in the previous section, we develop a
model for our domain speci�c scenario. The requirements can be �nd in the analysis
section. All features, categories and Context-parameter types are de�ned to match
our scenario.

Naming conventions

Categories are written in lowercase. Subcategories are named with the full path up
to the root. For example, supposing the parent of battery is smartphone. The ID for
this category is smartphone.battery. Each category can be separated with a dot (.)
or colon (:). A dot is used, if the subcategory is static and there will be only one
instance existing, eg. smartphone.android. If a subcategory is separated with
a colon (:), there can be multiple instances for a parent category. For example, the
category smartphone.android.app can have multiple instance groups for each applica-
tion. All features which normally belongs to smartphone.android.app are stored into
a subcategory. Thus, the apps can be distinguished. A category can have multiple
group instances. To clearly identify a feature and to avoid con�icts with category IDs,
all features will be written in UPPERCASE.

20

Context-Parameter

To match our scenario we need some additional context information. For any collected
feature we need the time when the feature is collected. Every feature must include
one instance of this type. Some features have phone numbers involved (eg. receiving
a SMS); such information is indicated through a Context-Parameter. For each GPS
coordinate, two parameters (longitude and latitude) are used. The feature here will
be the distance between the current and the last position. At last, we use a generic
Context-Parameter which can include arbitrary data.
For this purpose, the following Context-Parameters are introduced:

Ctx-P-Timestamp

� description:The time when the feature was measured
� value: A timestamp. Can have two representations: The �rst one is in unix

time format (milliseconds since 1970) or in xsd:dateTime format (eg. "yyyy-
MM-dd'T'HH:mm:ssZ"). More information about time formats are available in
Java API8.

� type: timestamp

Ctx-P-Phonenumber

� description:A phone number
� value: A number which represents a phone number.
� type: phone number

Ctx-P-Longitude

� description:The longitude coordinate from GPS position
� value: A �oat number
� type: longitude

Ctx-P-Latitude

� description:The latitude coordinate from GPS position
� value: A �oat number
� type: latitude

Except for Ctx-P-Timestamp, the parameters are optional and are not essential.

Domain-speci�c features

In this section a model instance for our scenario is introduced. We need to match the
requirements de�ned in 3.2.1. Figure 3.4 shows an overview of all categories which
will be developed. All features include at least the Ctx-P-Timestamp parameter.
Some features use additional Context-Parameters, which will be explained in the list.

C: smartphone
8http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

21

smartphone

system

memory phone

battery storageusb

device

communication

phone

sms

ip

gsm cdma

bluetooth
wifi

connection

scan

sensor

gps

camera

android

os

app

Figure 3.4: Domain-speci�c categories for Android Usage Study scenario. Each feature
resists in one category.

� id: smartphone
� desc: The root category holding all other categories and features for our sce-

nario.

C: smartphone.system

� id: smartphone.system
� desc: Groups all system speci�c features like basic device characteristics or

information about the underlying Linux system. Also con�guration settings,
process- and memory information resist here.

F: IMEI

� id: smartphone.system.IMEI
� desc: Each smartphone is branded with an unique device identi�er string called

IMEI (International Mobile Equipment Identity)9. Because the IMEI is (mostly)
unchangeable, the users device can clearly identi�ed with this string. To preserve
user privacy the value must be hashed before storing.

� value: An arbitrary string.
� type: arbitrary

F: IMSI

� id: smartphone.system.IMSI

9http://en.wikipedia.org/wiki/International_Mobile_Equipment_Identity

22

� desc: The IMSI has the same characteristics like the IMEI, but it is not identi-
fying the device. It is used to clearly identify the SIM-Card10. The value must
be hashed too.

� value: An arbitrary string.
� type: arbitrary

F: SYSTEM_BOOT

� id: smartphone.system.SYSTEM_BOOT
� desc: The last time the smartphone booted
� value: date time
� type: date time

F: SYSTEM_SHUTDOWN

� id: smartphone.system.SYSTEM_SHUTDOWN
� desc: The Android system is shutting down
� value: date time
� type: date time

F: ADB_ENABLED

� id: smartphone.system.ADB_ENABLED
� desc: Is the Android Debug Bridge (ADB) enabled11. Used for Android debug-

ging.
� value: true or false
� type: quali�ed

F: DATA_ROAMING_ENABLED

� id: smartphone.system.DATA_ROAMING_ENABLED
� desc: The state of the data roaming feature.
� value: true or false
� type: quali�ed

F: DISPLAY_BRIGHTNESS

� id: smartphone.system.DISPLAY_BRIGHTNESS
� desc: The brightness of the display.
� value: An integer between 0 and 254
� type: quantity

F: DISPLAY_WIDTH

� id: smartphone.system.DISPLAY_WIDTH
� desc: The width of the display.

10http://en.wikipedia.org/wiki/International_Mobile_Subscriber_Identity
11http://developer.android.com/tools/help/adb.html

23

� value: An integer in px.
� type: quantity

F: DISPLAY_HEIGHT

� id: smartphone.system.DISPLAY_HEIGHT
� desc: The height of the display.
� value: An integer in px.
� type: quantity

F: NON_MARKET_INSTALL

� id: smartphone.system.NON_MARKET_INSTALL
� desc: The possibility to install applications from other marketplaces than Google's

Play Store.
� value: true or false
� type: quali�ed

F: MODEL

� id: smartphone.system.MODEL
� desc: The model identi�er.
� value: An arbitrary string
� type: arbitrary

F: FIRMWARE_VERSION

� id: smartphone.system.FIRMWARE_VERSION
� desc: The device �rmware version.
� value: An arbitrary string
� type: arbitrary

F: PRODUCT

� id: smartphone.system.PRODUCT
� desc: An identi�er describing the phone.
� value: An arbitrary string
� type: arbitrary

F: KERNEL_VERSION

� id: smartphone.system.KERNEL_VERSION
� desc: The kernel version for the underlying Linux system.
� value: An arbitrary string
� type: arbitrary

F: BUILD_NUMBER

� id: smartphone.system.BUILD_NUMBER

24

� desc: The kernel build number.
� value: An arbitrary string
� type: arbitrary

F: OS

� id: smartphone.system.OS
� desc: The operating systems version number
� value: An arbitrary string
� type: arbitrary

F: SDK

� id: smartphone.system.SDK
� desc: The SDK version of the Android system
� value: Integer
� type: quali�ed

F: BASEBAND_VERSION

� id: smartphone.system.BASEBAND_VERSION
� desc: The smartphones baseband version.
� value: An arbitrary string or unknown
� type: arbitrary

F: MANUFACTURER

� id: smartphone.system.MANUFACTURER
� desc: The smartphones manufacturer.
� value: An arbitrary string
� type: arbitrary

F: MAC

� id: smartphone.system.MAC
� desc: The MAC-address of WiFi adapter, if available.
� value: 6-byte hexadecimal string with (-) as separator or unknown if adapter is

unavailable.
� type: arbitrary

F: TETHERING_ENABLED

� id: smartphone.system.TETHERING_ENABLED
� desc: Indicates if the user has tethering enabled.12

� value: true or false

12With tethering enabled, the mobile internet connection can be shared to other devices via Wi�.
The smartphone acts as a mobile hotspot and routes packets through clients and the connection
adapter.

25

� type: quali�ed

F: USB_MASS_STORAGE_ENABLED

� id: smartphone.system.USB_MASS_STORAGE_ENABLED
� desc: Indicates if USB mass storage is enabled.
� value: true or false
� type: quali�ed

F: PROCESS_COUNT

� id: smartphone.system.PROCESS_COUNT
� desc: The amount of active processes.
� value: An integer >0
� type: quantity

F: SIM_STATE

� id: smartphone.system.SIM_STATE
� desc: The state of the smartphones SIM card.
� value:

� SIM_STATE_ABSENT no SIM card inserted
� SIM_STATE_NETWORK_LOCKED
� SIM_STATE_PIN_REQUIRED a PIN number is required to unlock the

card
� SIM_STATE_PUK_REQUIRED a PUK number is required to unlock

the card
� SIM_STATE_READY the SIM card is unlocked and ready for work
� SIM_STATE_UNKNOWN the state is unknown

� type: quali�ed

F: PHONE_TYPE

� id: smartphone.system.PHONE_TYPE
� desc: Describes the phone type
� value:

� PHONE_TYPE_GSM a smartphone with GSM13 support
� PHONE_TYPE_CDMA a smartphone with CDMA14 support
� PHONE_TYPE_NONE a smartphone with neither GSM nor CDMA sup-

port.
� PHONE_TYPE_UNKNOWN the device type is unknown

� type: quali�ed

13http://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
14http://en.wikipedia.org/wiki/CDMA2000

26

F: AIRPLANE_MODE

� id: smartphone.system.AIRPLANE_MODE
� desc: When the phone is in airplane mode, all network adapters are turned o�.
� value: true or false
� type: quantity

C: smartphone.system.phone

� id: smartphone.system.phone
� desc: Groups all phone speci�c features

F: SERVICE_STATE

� id: smartphone.system.SERVICE_STATE
� desc: The phones service state
� value:

� STATE_IN_SERVICE The phone is fully working. It is registered with
an operator. The phone could be registered with the home network or
roaming.

� STATE_OUT_OF_SERVICE Phone is not operating at current time.
There are di�erent reasons, why this situation can appear: The phone is
actually searching for an operator and/or is not registered to any. This also
happens, if the radio signal is unavailable or the registration to an operator
is denied.

� STATE_EMERGENCY_ONLY Only emergency calls can be made (the
phone is regularly registered and locked).

� STATE_POWER_OFF The radio or telephony is turned o�.
� SIM_STATE_UNKNOWN The phone state is unknown.

� type: quali�ed

C: smartphone.system.memory

� id: smartphone.system.memory
� desc: All memory speci�c features resists here.

F: MEMORY_AVAILABLE

� id: smartphone.memory.MEMORY_AVAILABLE
� desc: Indicates the available system memory in bytes.
� value: An integer >=0
� type: quantity

F: MEMORY_LOW

� id: smartphone.memory.MEMORY_LOW
� desc: Indicates that the system considered to be in a low memory state.

27

� value: true or false
� type: quali�ed

F: MEMORY_TRESHOLD

� id: smartphone.memory.MEMORY_TRESHOLD
� desc: Indicates which threshold (in bytes) has to be reached, before the system

is in low memory state and start killing processes.
� value: An integer >=0
� type: quantity

C: smartphone.system.battery

� id: smartphone.system.battery
� desc: All power related features resists here.

F: POWER

� id: smartphone.system.battery.POWER
� desc: Indicates that the phone is connected to a power supply.
� value: CONNECTED or DISCONNECTED
� type: quali�ed

F: LEVEL

� id: smartphone.system.battery.LEVEL
� desc: The current power level.
� value: 0-100 percent.
� type: quantity

F: STATUS

� id: smartphone.system.STATUS
� desc: The actual battery status.
� value:

� BATTERY_STATUS_CHARGING the phone is charging its battery
� BATTERY_STATUS_DISCHARGING the batteries phone is discharging
� BATTERY_STATUS_FULL the battery is fully charged.
� BATTERY_STATUS_NOT_CHARGING the phone is currently not charg-

ing
� BATTERY_STATUS_UNKNOWN the battery state is unknown

� type: quali�ed

F: VOLTAGE

� id: smartphone.system.battery.VOLTAGE
� desc: The current voltage.

28

� value: An integer >=0
� type: quantity

C: smartphone.system.storage

� id: smartphone.system.storage
� desc: All features that belongs to storage, resist here.

F: MEDIA_STATE

� id: smartphone.system.storage.MEDIA_STATE
� desc: The state of primary external storage media
� value:

� MEDIA_BAD_REMOVAL a bad removal
� MEDIA_CHECKING the storage is currently checked
� MEDIA_EJECT the storage is ejected
� MEDIA_MOUNTED the storage is mounted
� MEDIA_REMOVED the storage is removed
� MEDIA_SHARED the storage is shared
� MEDIA_UNMOUNTABLE the storage is not mountable
� MEDIA_UNMOUNTED the storage is currently unmounted, but is mount-

able
� MEDIA_STATE_UNKNOWN the storage state is unknown

� type: quali�ed

F: MEDIA_INTERNAL_SIZE

� id: smartphone.system.storage.MEDIA_INTERNAL_SIZE
� desc: The total size of internal storage in bytes.
� value: An integer >=0
� type: quantity

F: MEDIA_INTERNAL_FREE

� id: smartphone.system.storage.MEDIA_INTERNAL_FREE
� desc: The amount of free internal storage in bytes.
� value: An integer >=0
� type: quantity

F: MEDIA_EXTERNAL_SIZE

� id: smartphone.system.storage.MEDIA_EXTERNAL_SIZE
� desc: The total size of external storage in bytes.
� value: An integer >=0
� type: quantity

F: MEDIA_EXTERNAL_FREE

29

� id: smartphone.system.storage.MEDIA_EXTERNAL_FREE
� desc: The amount of free external storage in bytes.
� value: An integer >=0
� type: quantity

C: smartphone.system.usb

� id: smartphone.system.usb
� desc: Groups all USB related features

F: STATE

� id:smartphone.system.usb.STATE
� desc: Indicates the state of USB connection.
� value: CONNECTED or DISCONNECTED
� type: quali�ed

C: smartphone.sensor

� id: smartphone.sensor
� desc: Sensor related features resist here.

C: smartphone.sensor.gps

� id: smartphone.sensor.gps
� desc: Information about the GPS sensor.

F: LOCATION_DISTANCE

� id: smartphone.sensor.gps.LOCATION_DISTANCE
� desc: The distance between the actual and last known GPS15 position.
� value: An integer in meter.
� type: quantity
� ctx-params: There are two additional parameters: the longitude and latitude

of current position (ContextParamTypes are LONGITUDE an LATITUDE).

C: smartphone.sensor.camera

� id: smartphone.sensor.camera
� desc: All information about camera usage.

F: NEW_PICTURE

� id: smartphone.sensor.camera.NEW_PICTURE
� desc: Indicates that a new picture is taken with a camera.
� value: always true
� type: quali�ed

15Global Positioning System

30

C: smartphone.communication

� id: smartphone.communication
� desc: Groups all information about network activities.

C: smartphone.communication.ip

� id: smartphone.communication.ip
� desc: All IP related features resist here.

F: RX_3G

� id: smartphone.communication.ip.RX_3G
� desc: The amount of bytes received through the mobile interface.
� value: The tra�c in bytes >=0
� type: quantity

F: TX_3G

� id: smartphone.communication.ip.TX_3G
� desc: The amount of bytes send through the mobile interface.
� value: The tra�c in bytes >=0
� type: quantity

F: RX_OTHER

� id: smartphone.communication.ip.RX_OTHER
� desc: The amount of bytes received through other interfaces (without 3g).
� value: The tra�c in bytes >=0
� type: quantity

F: TX_OTHER

� id: smartphone.communication.ip.TX_OTHER
� desc: The amount of bytes send through other interfaces (without 3g).
� value: The tra�c in bytes >=0
� type: quantity

C: smartphone.communication.gsm

� id: smartphone.communication.gsm
� desc: Information related to GSM

F: CELL_ID

� id: smartphone.communication.gsm.CELL_ID
� desc: The ID of an GSM cell.
� value: an arbitrary string
� type: arbitrary

31

F: CELL_LAC

� id: smartphone.communication.gsm.CELL_LAC
� desc: The local area code of the GSM cell.
� value: an arbitrary string
� type: arbitrary

C: smartphone.communication.cdma

� id: smartphone.communication.cdma
� desc: Groups all CDMA speci�c features

F: CELL_BASESTATION_ID

� id: smartphone.communication.cdma.CELL_BASESTATION_ID
� desc: The base station identi�cation number for a CDMA cell.
� value: an integer
� type: quantity

F: CELL_NETWORK_ID

� id: smartphone.communication.cdma.CELL_NETWORK_ID
� desc: The network identi�cation number for a CDMA cell.
� value: an integer
� type: quantity

F: CELL_SYSTEM_ID

� id: smartphone.communication.cdma.CELL_SYSTEM_ID
� desc: The system identi�cation number for a CDMA cell.
� value: an integer
� type: quantity

F: CELL_LATITUDE

� id: smartphone.communication.cdma.CELL_LATITUDE
� desc: The GPS latitude value for a CDMA cell.
� value: an integer
� type: arbitrary

F: CELL_LONGITUDE

� id: smartphone.communication.cdma.CELL_LONGITUDE
� desc: The GPS longitude value for a CDMA cell.
� value: an integer
� type: arbitrary

C: smartphone.communication.wi�

32

� id: smartphone.communication.wi�
� desc: Information bout WiFi related features

C: smartphone.communication.wi�.connection.#

� id: smartphone.communication.wi�.connection.#
� desc: For each di�erent access point a client is connected to, a subcategory is

created. An 8-digit hash code of the access-points BSSID is used as name.

F: BSSID

� id: smartphone.communication.wi�.connection.#.BSSID
� desc: The access point's BSSID. Mostly this is the access point's MAC-address,

but can also be a random string.
� value: an arbitrary string
� type: arbitrary

F: SSID

� id: smartphone.communication.wi�.connection.#.SSID
� desc: The access point's SSID.
� value: an arbitrary string
� type: arbitrary

F: SSID_HIDDEN

� id: smartphone.communication.wi�.connection.#.SSID_HIDDEN
� desc: Indicates if the access point hides its SSID.
� value: true or false
� type: quali�ed

F: LINK_SPEED

� id: smartphone.communication.wi�.connection.#.LINK_SPEED
� desc: The speed of established connection in Mbps.
� value: integer
� type: quantity

F: IP_ADDRESS

� id: smartphone.communication.wi�.connection.#.IP_ADDRESS
� desc: The client's IP-address.
� value: integer
� type: quantity

F: MAC_ADDRESS

� id: smartphone.communication.wi�.connection.#.MAC_ADDRESS
� desc: The access point's MAC-address.

33

� value: A valid MAC-address.
� type: arbitrary

F: WIFI_STATE

� id: smartphone.communication.wi�.connection.#.WIFI_STATE
� desc: The state of the WiFi adapter.
� value:

� CONNECTED the smartphone has successfully joined a WiFi network
� DISCONNECTED the smartphone has disconnected from access point
� CONNECTING the smartphone is trying to establish a WiFi connection
� DISCONNECTING the smartphone is disconnecting from access point
� SUSPENDED the string is possible, but the de�nition is unknown. The

API does not describe this value.
� UNKNOWN the WiFi state is unknown

� type: quali�ed

C: smartphone.communication.wi�.scan.#

� id: smartphone.communication.wi�.scan.#
� desc: Information about scanned access points. An 8-digit hash code of the

access point's BSSID is used as name.

� id: smartphone.communication.wi�.connection.#.BSSID
� desc: The access point's BSSID. Mostly this is the access points MAC-address,

but can also be a random string.
� value: an arbitrary string
� type: arbitrary

F: SSID

� id: smartphone.communication.wi�.connection.#.SSID
� desc: The access point's SSID.
� value: an arbitrary string
� type: arbitrary

F: FREQUENCY

� id: smartphone.communication.wi�.connection.#.FREQUENCY
� desc: The access point's channel frequency in Mhz the client is communicating

through.
� value: integer
� type: quantity

F: LEVEL

� id: smartphone.communication.wi�.connection.#.LEVEL

34

� desc: The detected signal level of access point in dBm.
� value: integer
� type: quantity

F: CAPABILITIES

� id: smartphone.communication.wi�.connection.#.CAPABILITIES
� desc: The supported security capabilities (authentication, key management and

encryption schemes).
� value: a string with special format. Every supported scheme appears in []-

Brackets and is parted into maximum three parts for authentication, key man-
agement and encryption schemes (in this order). A colon - is used as separator.
If a scheme is not supported, it is missing in output. Multiple supported schemes
appear in the same line after a closing bracket (]) from previous scheme. If there
is support for multiple encryption algorithms, a plus sign (+) is used as separa-
tor. Examples:

[WPA-PSK-TKIP+CCMP][WPA2-PSK-TKIP+CCMP][WPS]
[WPA2-PSK-TKIP]
[WEP]

� type: arbitrary

C: smartphone.communication.bluetooth

� id: smartphone.communication.bluetooth
� desc: Information about the bluetooth state.

F: STATE

� id: smartphone.communication.bluetooth.STATE
� desc: Indicates the state of the bluetooth adapter.
� value:

� STATE_ON the bluetooth adapter is turned on
� STATE_OFF the bluetooth adapter is turned o�
� STATE_TURNING_ON the bluetooth adapter is going to be turned on
� STATE_TURNING_OFF the bluetooth adapter is going to be turned o�

� type: quali�ed

F: SCANMODE

� id: smartphone.communication.bluetooth.SCANMODE
� desc: Indicates the scan mode for the bluetooth adapter.
� value:

� SCAN_MODE_CONNECTABLE other clients can connect to the smart-
phone bluetooth adapter, but the device is invisible.

35

� SCAN_MODE_CONNECTABLE_DISCOVERABLE other clients can con-
nect to the smartphone bluetooth adapter and the device is visible.

� SCAN_MODE_NONE its not possible to connect to the bluetooth adapter
and the device is not visible

� SCAN_MODE_UNKNOWN the scanmode cannot be determined

� type: quali�ed

C: smartphone.communication.bluetooth.#

� id: smartphone.communication.bluetooth.#
� desc: Information about bluetooth connections. An 8-digit hash code of the

ADDRESS from the target bluetooth adapter is used.

F: NAME

� id: smartphone.communication.bluetooth.#.NAME
� desc: The name of the remote device.
� value: an arbitrary string
� type: arbitrary

F: ADDRESS

� id: smartphone.communication.bluetooth.#.ADDRESS
� desc: The address of the remote device.
� value: an arbitrary string
� type: arbitrary

F: CONNECTION_STATE

� id: smartphone.communication.bluetooth.#.CONNECTION_STATE
� desc: The connection state.
� value: CONNECTED or DISCONNECTED
� type: arbitrary

F: BOND_STATE

� id: smartphone.communication.bluetooth.#.BOND_STATE
� desc: Indicates the bond state for the bluetooth adapter.
� value:

� BOND_BONDED bluetooth adapter is bonded to a remote device
� BOND_BONDING bluetooth adapter is trying to bond to a remote device
� BOND_NONE bluetooth adapter is not bonded to a remote device
� BOND_UNKNOWN bluetooth adapter bonding state is unknown

� type: quali�ed

C: smartphone.android

36

� id: smartphone.android
� desc: All Android speci�c features which are not related to the underlying

kernel system.

F: MEDIA_IMAGE_COUNT

� id: smartphone.android.MEDIA_IMAGE_COUNT
� desc: The amount of images found on device.
� value: An integer >=0
� type: quantity

F: MEDIA_VIDEO_COUNT

� id: smartphone.android.MEDIA_VIDEO_COUNT
� desc: The amount of videos found on device.
� value: An integer >=0
� type: quantity

F: MEDIA_AUDIO_COUNT

� id: smartphone.android.MEDIA_AUDIO_COUNT
� desc: The amount of audio tracks found on device.
� value: An integer >=0
� type: quantity

F: RINGMODE

� id: smartphone.android.RINGMODE
� desc: The ringmode setting
� value:

� RINGER_MODE_NORMAL the ringer mode is normal
� RINGER_MODE_SILENT the ringer mode is silent.
� RINGER_MODE_VIBRATE the ringer mode is set to vibrate

� type: quali�ed

F: VIBRATE_TYPE

� id: smartphone.android.VIBRATE_TYPE
� desc: The vibrate mode. Can be either ringer (the phone is ringing) or noiseless

noti�cation.
� value:

� VIBRATE_TYPE_RINGER the vibrate mode is ringing
� VIBRATE_TYPE_NOTIFICATION the vibrate mode is noti�cation

� type: quali�ed

F: VIBRATE_SETTING

37

� id: smartphone.android.VIBRATE_SETTING
� desc: The settings for vibrate mode.
� value:

� VIBRATE_SETTING_ON vibration is enabled
� VIBRATE_SETTING_OFF vibration is disabled
� VIBRATE_SETTING_ONLY_SILENT vibration is only enabled in silent

mode

� type: quali�ed

F: SCREEN

� id: smartphone.android.SCREEN
� desc: Indicates if the screen is turned on or o�.
� value: true or false
� type: quali�ed

The subcategory # is named as the underlying feature MAC-ADDRESS.

C: smartphone.android.app.#

� id: smartphone.android.app
� desc: Each individual app resides under this category. Every # subcategory

represents one app. A 8-digit hash code, which is generated from the app's
unique package name is used.

F: NAME

� id: smartphone.android.app.#.NAME
� desc: The applications name
� value: an arbitrary string
� type: arbitrary

F: PACKAGE_NAME

� id: smartphone.android.app.#.PACKAGE_NAME
� desc: The applications package name. This value is unique in system and is

also used as process name on system level; it can be used to clearly identify a
running app.

� value: an arbitrary string
� type: arbitrary

F: INSTALLER

� id: smartphone.android.app.#.INSTALLER

38

� desc: The package name of the installer which installs this app. If the app
is installed from o�cial Google market, the value is com.android.vending
or com.google.android.feedback. Node: in future Android versions this
can change and an other namespace is used. If the value is UNKNOWN or
null, the application seems to be installed from other sources (eg. from external
SD-card).

� value: an arbitrary string
� type: arbitrary

F: VERSION_NAME

� id: smartphone.android.app.#.VERSION_NAME
� desc: The applications version name.
� value: an arbitrary string
� type: arbitrary

F: VERSION_CODE

� id: smartphone.android.app.#.VERSION_CODE
� desc: The applications version code.
� value: an integer
� type: Integer

F: MIN_SDK

� id: smartphone.android.app.#.MIN_SDK
� desc: The minimum required SDK version in order to run this app.
� value: an integer >0
� type: Integer

F: INSTALLED

� id: smartphone.android.app.#.INSTALLED
� desc: The installation time.
� value: date time
� type: date time

F: LAST_UPDATE

� id: smartphone.android.app.#.LAST_UPDATE
� desc: The time the app is last updated.
� value: date time
� type: date time

F: CPU_LOAD

� id: smartphone.android.app.#.CPU_LOAD

39

� desc: The app's CPU usage. The value is a �oat between 0.0 and 100.0 in
percent.

� value: �oat
� type: quantity

F: REPLACED

� id: smartphone.android.app.#.REPLACED
� desc: Indicates if the app is replaced.
� value: true or false
� type: quali�ed

F: REMOVED

� id: smartphone.android.app.#.REMOVED
� desc: Indicates if the app is removed.
� value: true or false
� type: quali�ed

C: smartphone.android.app.#.permission:#

� id: smartphone.android.app.#.permission:#
� desc: Information about required and requested permissions for a speci�c app.

For every permission a unique subcategory is created, separated by a colon :.

F: PERMISSION_REQUIRED

� id: smartphone.android.app.#.permission:#.PERMISSION_REQUIRED
� desc: Indicates a required permission for this app.
� value: an arbitrary string
� type: arbitrary

F: PERMISSION_REQUESTED

� id: smartphone.android.app.#.permission:#.PERMISSION_REQUESTED
� desc: Indicates a requested permission for this app.
� value: an arbitrary string
� type: arbitrary

F: PROTECTION_LEVEL

� id: smartphone.android.app.#.permission:#.PROTECTION_LEVEL
� desc: Indicates a the protection level of a required permission.
� value: can be normal (0), dangerous (1), signature (2) and signature or system

(3). See the Android developer pages for more information about protection
levels.16

16http://developer.android.com/reference/android/content/pm/PermissionInfo.html

40

� type: integer

C: smartphone.communication.phone

� id: smartphone.communication.phone
� desc: Information about incoming and outgoing calls.

F: OUTGOING_CALL

� id: smartphone.communication.phone.OUTGOING_CALL
� desc: An outgoing call is made.
� value: the phone number from called phone. This number will be hashed for

hiding the identity.
� type: phone number

F: STATE

� id: smartphone.communication.phone.STATE
� desc: The phones calling state. Changes if a call is received or made by the

device.
� value:

� IDLE the phone is in idle state, no call is active or hold.
� RINGING the phone is in ringing state.
� OFFHOOK the phone is dialing, activating or holding a call.

� type: quali�ed
� ctx-params: If the state is STATE_RINGING and the caller did not suppress

his phone number, the incoming number is included here.

C: smartphone.communication.sms

� id: smartphone.communication.sms
� desc: Information about incoming and outgoing SMS messages.

F: OUTGOING_SMS

� id: smartphone.communication.sms.OUTGOING_SMS
� desc: An outgoing SMS is detected.
� value: The receivers phone number. This number will be hashed for hiding the

identity.
� type: phone number
� ctx-params: The length of the SMS (the character count of the payload).

F: INCOMING_SMS

� id: smartphone.communication.sms.INCOMING_SMS
� desc: An incoming SMS is detected.
� value: The senders phone number. This number will be hashed for hiding the

identity.

41

� type: phone number
� ctx-params: Has one additional context parameter: the character count of the

received SMS.

In A.1 an overview of all features and categories is given. The measurement times are
discussed in the following section.

Table 3.1: Overview of meta model instances

Feature / Category Type Interval
C: smartphone
C: smartphone.system
F: IMEI String once-time

F: IMSI String once-time

F: MODEL String once-time

F: FIRMWARE_VERSION String once-time

F: PRODUCT String once-time

F: MANUFACTURER String once-time

F: BASEBAND_VERSION String once-time

F: KERNEL_VERSION String once-time

F: BUILD_NUMBER String once-time

F: OS String once-time

F: SDK Integer once-time

F: MAC String once-time

F: SYSTEM_BOOT Date time event-based

F: SYSTEM_SHUTDOWN Date time event-based

F: ADB_ENABLED Boolean event-based

F: TETHERING_ENABLED Boolean event-based

F: NON_MARKET_INSTALL Boolean event-based

F: DATA_ROAMING_ENABLED Boolean event-based

F: USB_MASS_STORAGE_ENABLED Boolean event-based

F: AIRPLANE_MODE Boolean event-based

F: SIM_STATE String event-based

F: SERVICE_STATE String event-based

F: PHONE_TYPE String once-time

F: DISPLAY_BRIGHTNESS Integer event-based

F: DISPLAY_WIDTH Integer once-time

F: DISPLAY_HEIGHT Integer once-time

F: PROCESS_COUNT Integer periodic

C: smartphone.system.memory
F: MEMORY_AVAILABLE Integer periodic

F: MEMORY_LOW Boolean periodic

F: MEMORY_TRESHOLD Integer periodic

42

C: smartphone.system.battery
F: POWER Boolean event-based

F: LEVEL Integer periodic

F: VOLTAGE Integer periodic

F: STATUS String periodic

C: smartphone.system.storage
F: MEDIA_STATE String event-based

F: MEDIA_INTERNAL_SIZE Integer periodic

F: MEDIA_INTERNAL_FREE Integer periodic

F: MEDIA_EXERNAL_SIZE Integer periodic

F: MEDIA_EXERNAL_FREE Integer periodic

C: smartphone.system.usb
F: STATE String event-based

C: smartphone.sensor
C: smartphone.sensor.gps
F: LOCATION_DISTANCE Integer periodic

C: smartphone.sensor.camera
F: NEW_PICTURE Integer event-base

C: smartphone.communication
C: smartphone.communication.ip
F: RX_3G Integer periodic

F: TX_3G Integer periodic

F: RX_OTHER Integer periodic

F: TX_OTHER Integer periodic

C: smartphone.communication.gsm
F: CELL_ID String event-based

F: CELL_LAC String event-based

C: smartphone.communication.cdma
F: CELL_BASESTATION_ID Integer event-based

F: CELL_NETWORK_ID Integer event-based

F: CELL_SYSTEM_ID Integer event-based

F: CELL_LATITUDE Integer event-based

F: CELL_LONGITUDE Integer event-based

F: CELL_NETWORK_ID Integer event-based

C: smartphone.communication.wi�
C: smartphone.communication.wi�.connection.#
F: BSSID String event-based

F: SSID String event-based

F: SSID_HIDDEN Boolean event-based

F: LINK_SPEED Integer event-based

F: IP_ADDRESS Integer event-based

43

F: MAC_ADDRESS String event-based

F: WIFI_STATE String event-based

C: smartphone.communication.wi�.scan.#
F: BSSID String event-based

F: SSID String event-based

F: FREQUENCY Integer event-based

F: LEVEL Integer event-based

F: CAPABILITIES String event-based

C: smartphone.communication.bluetooth
F: STATE String event-based

F: SCAN_MODE String event-based

C: smartphone.communication.bluetooth.#
F: NAME String event-based

F: ADDRESS String event-based

F: CONNECTION_STATE String event-based

F: BOND_STATE String event-based

C: smartphone.android
F: MEDIA_IMAGE_COUNT Integer periodic

F: MEDIA_VIDEO_COUNT Integer periodic

F: MEDIA_AUDIO_COUNT Integer periodic

F: RINGMODE Integer event-based

F: VIBRATE_SETTING Integer event-based

F: SCREEN String event-based

C: smartphone.android.app.#
F: NAME String event-based

F: PACKAGE_NAME String event-based

F: INSTALLER String event-based

F: VERSION_NAME String event-based

F: VERSION_CODE Integer event-based

F: MIN_SDK Integer event-based

F: INSTALLED Date time event-based

F: LAST_UPDATE Date time event-based

F: CPU_LOAD Integer event-based

F: REPLACED Boolean event-based

F: REMOVED Boolean event-based

C: smartphone.android.app.#.permission:#
F: PERMISSION_REQUIRED String event-based

F: PERMISSION_REQUESTED String event-based

F: PROTECTION_LEVEL Integer event-based

C: smartphone.communication.phone
F: STATE String event-based

44

F: OUTGOING_CALL phone number event-based

C: smartphone.communication.sms
F: OUTGOING_SMS phone number event-based

F: INCOMING_SMS phone number event-based

Measurement times

The measurement times can di�er through the whole feature set. Some statements
only make sense if the needed features are gathered continuously over a period of time
and an adequate amount of data is collected. The reasons for missing features are

� the phone is turned o� over a long period
� the is no hardware support (eg. camera is missing)
� the user has disabled the collecting of features
� the app is stopped or has crashed
� the user uninstalled the app before uploading the gathered data

Also, the measurement intervals must be chosen intelligently. If too short, the CPU
and power consumption may increase inappropriately. If too long, some important
features are missing. Looking at the feature set in 3.3.1, the features can be grouped
based on three measurement times:

� One time
� Periodic
� Event based

One time features are features like the IMEI or model name. They will be measured
only once at the �rst start of the application. They will probably not change during
the lifetime of a smartphone. If a user upgrades the operating system, the application
will (hopefully) be reinstalled, and the information is collected again. Some features
must be measured periodically, eg. the battery status or scans for WiFi access points.
The intervals should range between one minute and up to one day. The client comes
with default measurement times, but these can be changed or adjusted at any time.
Event based features occur only sometimes at an unspeci�c time. Such features are
incoming and outgoing calls or new picture being taken with the camera.

45

46

Chapter 4

Design and implementation of

software components

In this chapter the previously developed concept for an Android usage study system
is implemented.

4.1 Architecture of the Android usage study system

HTTPS

POST /aus/resources/generic HTTP/1.1

Host: trust.inform.fh-hannover.de

Content-Type: binary/octet-stream

IMEI: 890dkwoiqjd993jdjoajd93djc[…]

3df4fgd5424ffe3fsk99983jifj9su9jv9j9j9j9

8uf8uw8hf89hsfhs9ehf89hvspokpai09qk

F9wj0efwjfsjpfsjpofjspojfpsjfposjdfposjdf

[…]

Figure 4.1: The client uploads their data to a server instance over the internet. A
HTTPS POST-request with the data as payload is used.

As shown in 4.1, the data is transmitted via a simple HTTP-request including the
binary db4o database �le. The request type is POST and it's payload is the base64
encoded db4o �le. There is an additional custom header �eld: IMEI. It contains the
hashed IMEI of a smartphone user. It is used for saving the �le with this hashed pre�x
in order to keep the di�erent devices apart. If the header does not exist, a default
�le name is chosen. The webservice is available via SSL and o�ers one interface to

47

the user. This interface only accepts POST data with Content-Type 'binary/octet-
stream'. All other types are rejected. If the input validation of the IMEI-header fails,
the request is no longer processed. The service also checks the payload for a correct
db4o database.

4.2 Client application

Acquisition ProcessingSensor

Sensor

Sensor

data

data

Collector data Features

Data handling

Storage

View

Transport

Marshaller

Dispatcher

Figure 4.2: The clients components

The app can be divided into three components: Acquisition, processing and handling
of data.
The acquisition component handles all incoming data collected by sensors. Sensors
collect the data in background. Each sensor has di�erent characteristics in type and
quantity of the collected data. Some are observers and listen to system changes and
some are only triggered on user action. Others will repeadly be activated at a speci�c
time. The data the sensors collect can have di�erent representations, so transformation
to a common format is necessary. Incorrect data is rejected, the rest is relayed to
the processing component. The processing component is responsible for marshaling
the collected data to the metamodel introduced in 3.3.1. After transformation, the
features are relayed to the next component. The data handling component acts as
a dispatcher and chooses what to do with the incoming features. The data could
be stored, viewed or transported. The application is implemented with the following
package structure:

de.fhhannover.inform.trust
The metamodel classes shared from the Trust@FHH team. This package is included
from an external JAR-archive.

com.db4o.* / EDU.purdue.cs.bloat.*
The db4o package for storing and queryng the data. This package is included from
an external JAR-archive.

de.fhh.inform.trust.aus.activity
All views resists here.

48

de.fhh.inform.trust.aus.alarm
Helper classes for repeadly executed tasks.

de.fhh.inform.trust.aus.metadata
Helper classes for working with meta data.

de.fhh.inform.trust.aus.processor
Components for marshalling the data.

de.fhh.inform.trust.aus.receiver
Sensor components which trigger on system or user events.

de.fhh.inform.trust.aus.service
Sensor components which will repeadly be activated at a speci�c time.

de.fhh.inform.trust.aus.storage
Classes that deals with the storage of data.

de.fhh.inform.trust.aus.util
Many other utility classes.

4.2.1 User interface

The user interface allows the user to

� see what data is being collected
� enable/disable collection of speci�c features
� set measurement intervals
� manually upload data

To achieve this, four screens are introduced (Figures 4.3 and 4.4. The Boot-View
is shown on start of the application and is hided when initialisation is �nished. The
Info-View shows the overall user statistics such as the amount of collected features or
the last upload date.
The Spread -View gives the user the ability to upload the data or store it in the �le
system.
The Customize-View lets the user change the preferences of the FHH Device Analyzer.
The user can enable or disable groups of features. Settings for nearly every category
and upload automation exist. The Log-view shows detailed information about every
collected feature.

49

Figure 4.3: FHH Device Analyzer screenshots #1

(a) Boot screen (b) Information about collected data

4.2.2 Developement enviroment

The FHH Device Analyzer is developed with the Eclipse1 IDE and the Android SDK2.

4.2.3 Delivering and installing

The APK �le format is used for packaging and distributing applications. The �le
post�x is .apk. The app is named FHH Device Analyzer and can be obtained
from the Wiki pages 3 at FHH. The user can download the .apk archive manually or
let the smartphone install it via QR-Code4. The app requires the following Android
permissions to run:

android.permission.INTERNET
android.permission.ACCESS_NETWORK_STATE

1https://www.eclipse.org/
2http://developer.android.com/sdk/index.html
3https://trust.inform.fh-hannover.de/trust_redmine/projects/android-usage-study-2012
4Quick response code

50

Figure 4.4: FHH Device Analyzer screenshots #2

(a) Upload and storage (b) Preferences

android.permission.ACCESS_WIFI_STATE
android.permission.READ_PHONE_STATE
android.permission.PROCESS_OUTGOING_CALLS
android.permission.RECEIVE_SMS
android.permission.BROADCAST_PACKAGE_REMOVED
android.permission.BROADCAST_PACKAGE_REMOVED
android.permission.READ_SMS
android.permission.WRITE_EXTERNAL_STORAGE
android.permission.ACCESS_FINE_LOCATION
android.permission.ACCESS_COARSE_LOCATION
android.permission.BLUETOOTH
android.permission.BLUETOOTH_ADMIN
android.permission.GET_TASKS
android.permission.BROADCAST_STICKY
android.permission.WAKE_LOCK
android.permission.CHANGE_WIFI_STATE

51

Figure 4.5: FHH Device Analyzer Log view

4.3 Webservice

The webservice part is developed with Netbeans5 IDE. For hosting the webservice, the
Glass�sh6 3.x application server is used (which is already shipped with Netbeans). The
chosen language is Java 1.6 with it's webservice stack JAX-WS (present since Java
1.5). The API o�ers a powerful set of functions for easily building and deploying
RESTful7 webservices.

To implement the service, the user must implement one method and using Java an-
notations for declaring the service interface.

1 @POST
2 @Consumes(" binary / octet−stream")
3 @Produces (MediaType .TEXT_HTML)
4 public St r ing postData (byte [] data) {
5 . . .
6 }

Listing 4.1: The webservice method with annotations

5http://netbeans.org/
6http://glass�sh.java.net/
7http://en.wikipedia.org/wiki/Representational_State_Transfer

52

The explanations of the �elds are:

� @POST Set the interface to POST-request
� @Consumes("binary/octet-stream") Only accept POST-data of the given

type
� @Produces(MediaType.TEXT_HTML) The content-type we return

With this declarations, the webservice accepts POST-requests with Content-Type
binary/octet-stream as payload and its return type is text or HTML. Every time
a client uploads data, this method is called. The whole webservice source code is
available in the appendixB.

4.3.1 Deploying

With Netbeans, the webservice is exported as WAR8 archive. This �le includes all
�les to run on any Java certi�cated application server. On the Glass�sh platform, the
webservice can be deployed via web interface or commandline tool.

4.3.2 Receiving data

All sessions are secured with SSL. For the �eldtest, the Glass�sh server is running in a
virtual machine hosted at trust.inform.fh-hannover.de. To establish a secure channel,
the public certi�cate is delivered with the client application. If a client sends data
to the webservice and the Content-Type value is other than binary/octet-stream, the
request is rejected with an error page. Because the IMEI value in header is used
for naming the payload in �le system, an attacker may try some directory traversal
tricks. Thus the value is validated before using. If the IMEI header is absend, the
value unknown is used instead.

4.3.3 Storing the �les

Before storing the payload, a consistence check is done before. The db4o library in-
cludes some methods to accomplish this task. If the check is successful, the data is
stored in the upload directory in the Glass�sh installation folder with the following
name convention:

IMEI_YYYYMMDDHHMMSS.db4o

The IMEI part is a 32-bit alphanumeric value, the result of a SHA9-256 one way
trap function. It only contains letters and digits, no special characters are used. The
second part is the upload date with the precision of seconds. If the check fails, the
payload is stored anaway for later examination. The post�x is always .db4o, or if the
database is corrupted .corrupt.

8http://en.wikipedia.org/wiki/WAR_�le_format_(Sun)
9Secure hash algorithm

53

54

Chapter 5

Analysis of collected data

To show what information can be obtained from the collected data, some exemplary
statements are done in this chapter.

5.1 Preliminary action

Before the data is analyzed, some sanitizing may be necessary:

� Merging the database �les
� Droping out useless data sets
� Repairing broken hierarchy

5.1.1 Merging databases

The clients upload their data from time to time, sometimes at several times a day. At
the end of the �eld test, the Glass�sh's upload/ directory contains multiple �les for
each participant. To be able to query the data e�ciently, we have to merge the parts
to one database for each smartphone user. Also, all databases should be merged to
one single database. The user can choose which variant is better suited for his pur-
pose. Some commandline tools have been written to accomplish these tasks. These
tools begin with a db4o_-pre�x. Most of them accept two parameters, pointing to a
�le or directory path.

db4o_merge_multiple SOURCE_DIR TARGET_DIR
db4o_merge_multiple_to_one SOURCE_DIR TARGET_FILE
db4o_merge_one_to_one SOURCE_FILE TARGET_FILE PREFIX

The �rst one merges all �les with .db4o-post�x found in SOURCE_DIR to TAR-
GET_DIR. For each client, a separate database with its hashed IMEI-pre�x is created.

The second variant behaves similarly, except that all databases result in one single
TARGET_FILE.

55

With the third variant, all �les with .db4o-post�x and PREFIX as the beginning of
the �lenames are merged.

5.1.2 Droping out useless data sets

After merging, the useless data sets are removed. During the �eld test, some people
reported trouble with the FHH Device Analyzer running on their smartphone. Some-
times the application crashed after a while or there were problems with the upload
mechanism. Some participants only ran the app temporarily or removed it after a
short period. On some devices manufactured by HTC1 it stopped working at all.
As result, some data sets cannot be used for some analysing purposes. For exam-
ple, to make statements about CPU usage over time, there is a need to have enough
measurement data. These databases are excluded from next the step.

5.1.3 Repairing broken hierarchies

This step may become necessary, as bugs in the app are discovered: Some features
are sorted into the wrong category. Also, the tree hierarchy can be broken, especially
when it comes to namespaces with colons (:). There can also be duplicates, which have
to be removed for some statements (basic information like the IMEI can be published
repeatedly, eg. if the user reinstalles the app).

However, for most statements, the hierarchy is intact and no further preperation is
required.

5.2 Exemplary analysis

5.2.1 Overall stats

� 15 participants
� 2,867,127 million collected features

The main �eld test is run for about 2 weeks, but some devices has been run for more
than 1 month. In the following, the databases with the most promising amount of
demanded features are chosen.

5.2.2 Tra�c statistics from WiFi adapter

This analysis deals with statistics about incoming and outgoing network tra�c. To
make statements about the amount of data, two features are of special interest:

smartphone.communication.ip.TX_OTHER
smartphone.communication.ip.RX_OTHER

1http://www.htc.com/

56

These features describe the tra�c from the WiFi adapter. The measurement is done
in 15 minute intervals over a period of around two weeks. Five devices are selected
for comparison. In �gure 5.1 the outgoing tra�c is shown. The x-axis denotes the
di�erent devices (1-5), while the y-axis shows the amount of transmitted data. It is
important to note the y-axis is log scaled. It is discovered, the median is located at

0,00 kb

0,01 kb

0,10 kb

1,00 kb

10,00 kb

100,00 kb

1.000,00 kb

10.000,00 kb

100.000,00 kb

1.000.000,00 kb

1 2 3 4 5

75%-Quartil

25%-Quartil

Average value

Standard deviation

Figure 5.1: Outgoing tra�c for WiFi connections

<50 kb or even <10 kb per 15 minutes. In total, the most tra�c amount is between 1
kb and 100 kb. The outlier above the 75%-quartil can be interpreted as a side e�ect
of the FHH Device Analyzer app. The data upload can produce a signi�cant increase
of outgoing tra�c.
When examining the outgoing tra�c in �gure 5.2, the overall median is located at
around the 100 kb mark. The devices 1 and 4 clearly remain under this mark (10 kb
and 5 kb). These devices may rarely be used for internet sur�ng. On all devices, the
outlier is located over 10 Mb and it's maximum is higher than 100 Mb. These values
can be reached by installing new or updating old software. Also watching videos
or video chatting can increase the incoming tra�c signi�cantly. In comparison the
incoming tra�c is 10 times higher than the outgoing tra�c.

5.2.3 Scanned WiFi access points

The next statements are about WiFi access points and their capabilities in supporting
security mechanisms. The FHH Device Analyzer stores information about all scanned
access points under a category below smartphone.communication.wifi.scan.#.
Each subcategory of smartphone.communication.wifi.scan represents one

57

0,01 kb

0,10 kb

1,00 kb

10,00 kb

100,00 kb

1.000,00 kb

10.000,00 kb

100.000,00 kb

1.000.000,00 kb

1 2 3 4 5

75%-Quartil

25%-Quartil

Average value

Standard deviation

Figure 5.2: Incoming tra�c for WiFi connections

access point. Every scanned device reports it's capabilities in supported authenti-
cation, key management and encryption schemes (in this order) and is mapped by
the smartphone.communication.wifi.connection.#.CAPABILITIES fea-
ture (3.3.1). Five devices are selected for comparison. The days of measurement di�er
from device to device. As visualized in �gure 5.3, the amount of access points is in-
creased nearly proportional with the time. Only device 185 deviates here, having seen
nearly two thousand access points in eight days. Some possible reasons are

� The participant resides in an area of high population
� The participant travels a lot
� There are areas where the amount of active access points is extremely high (eg.

a computer security exposition) and the participant remained there.

On average every device saw 45-69 access points a day. The outlier saw 242 devices
a day, this is nearly 3-5 time higher than other participants. Checking �gure 5.5 for
the authentication scheme mostly used, the WPA/WPA2 2 protocols clearly dominate
at 91.5% in average. With 5.4% the insecure and outdated[TWP07] WEP3 authen-
ti�cation scheme is used. The OPEN -networks mostly do their authenti�cation on
di�erent layers after a successful WiFi connection with the client. This types of access
point are often seen at train stations.

Another interesting fact is the wide spread of the WPS4 protocol. This protocol
created by the Wi-Fi Alliance is used to make the adjustment of access point clients

2Wi-Fi Protected Access
3Wired Equivalent Privacy
4Wi-Fi Protected Setup

58

6

14

22

8

274

620

1507

1931

0

500

1000

1500

2000

2500

0

5

10

15

20

25

1 2 3 4

ac
ce

ss
 p

o
in

ts

D
ay

s

Device

DAYS

TOTAL

Figure 5.3: The measurement days

717

551

481

457

457

272

258

211

173

163

0 200 400 600 800

[WPA-PSK-TKIP][WPA2-PSK-CCMP]

[WPA-PSK-TKIP+CCMP][WPA2-PSK-TKIP+CCMP-preauth][WPS]

[WPA-PSK-TKIP][WPA2-PSK-CCMP][WPS]

[WPA2-PSK-CCMP][WPS]

[WPA-PSK-TKIP+CCMP][WPA2-PSK-TKIP+CCMP][WPS]

[WPA2-PSK-CCMP]

[WPA-PSK-TKIP]

[OPEN]

[WPA-PSK-TKIP+CCMP][WPA2-PSK-TKIP+CCMP]

[WEP]

Figure 5.4: Top 10 capabilities strings of seen access points

more practical. Users with little or no knowledge of wireless security can easily setup
their devices without knowing something about authentication schemes or typing long
pass phrases. The protocol speci�es multiple methods to achieve this. One of them
allows the user to enter an eight digit numerical PIN5 to trigger the access point to
transmit the pre-shared keys needed to connect. The PIN is set to default factory
settings or can be chosen by the owner. To get the device to be certi�ed as WPS
conform, all manufactures have to support this type of method. Most models come
with WPS enabled by default.

Unfortunately, the protocol is vulnerable to brute-force attacks[Vie11]. Due to design
�aws, the attempts an attacker has to untertake before guessing the right number, can
be dramatically decreased. The maximum attempts to guess the right digit is 11,000.

5Personal identi�cation number

59

1

10

100

1000

10000

626 23b 890 185

ac
ce

ss
 p

o
in

ts

Device

TOTAL

WPA/WPA2

WEP

OPEN

Figure 5.5: Overview of capabilities per device

Some routers may limit the amount of attempts in a period of time. The maximum
guessing time in a worst-case scenario (blocking after �ve attempts for one hour) is
91.83 days, best-case is (with no lock down time) 0.17 days.
More than half (53.6%) of all seen access points (4332) have this feature enabled. The
count of WPS -enabled devices increases proportional to the amount of seen access
points on every smartphone5.6.

138

328

799

1055

274

620

1507

1931

100

1000

626 23b 890 185

ac
ce

ss
 p

o
in

ts

Device

WPS

TOTAL

Figure 5.6: WPS enabled and total amount of devices

In summary, most access points are secured with a good authentication scheme. But
this type of security highly depends on the used device model and �rmware version
(some vendors already introduced patches for limiting guessing attempts for WPS).
If WPS is enabled and no blocking is done, the protection is authentication protocol
is useless.

60

5.2.4 App usage

In this analysis, the apps installed by the user and their requested permissions are
inspected. As in �gure 5.7 seen, the most requested protection level is dangerous with

1

10

100

1000

10000

185 1dc 23b 274 395 626 6b5 890 8e8 a47 ad6 da1 f17 f51

signatureOrSystem

signature

normal

Dangerous

Figure 5.7: Overview of all protection levels used by any application on each smart-
phone. The most used protection level is clearly dangerous

nearly 70 percent in average. The normal level follows with 29.7 percent in average.
The other types of protection level are rarely requested.
Figure 5.8 shows the most installed applications.

Figure 5.8: The most installed applications

61

62

Chapter 6

Conclusion

In the following a short summary about the reached goals is given and the experiences
made during development are communicated. Additionaly an outlook to future work
is given.

6.1 Summary

With this thesis the following tasks has been �nished:

� An overview of the actual smartphone market
� The spread of the Android platform and its architecture
� The development of an Android usage study system
� Running a �eld test with voluntary participants to collect data
� Making some exemplary analysis on collected data

6.2 Experiences

At this point, the experiences made during development are described. This includes
development experiences with the Android platform, the �eld test and the analyses
afterwards.

� For developers, Google o�ers a rich set of free tools for the Android platform.
One of them is the Virtual Device Manager, which allows to create a virtual
device for testing applications. This makes the development and deployment
easy, without the need of a real device.

� Coding for mobile platforms is di�erent to other platforms (eg. workstations,
server). The developer has to consider the limited capabilities of a smartphone
such as storage space and CPU usage. As a result, the design of the application
must consider this facts. During development of the FHH Device Analyzer,
some mistakes are made. The most challenging parts are those with high CPU
consumption. At the beginning, the app raises the CPU load very high, if

63

collection was in process. The implementation has to be changed, in order to
run the app more smoothly.

� The analyzes of collected data was not as easy as imagined. Querying objects in
the db4o database is very slow, if a high amount of features resist in database.
The reason for this is how object oriented databases work. Every object that
is considered internally by db4o during querying, an instance is created. If this
object has additional references to other objects, they may be instantiated too.
This leads to a high amount of memory usage and slows down the query.

6.3 Future work

� In order to �x some outstanding bugs and to �ne tuning the performance, the
client application should be reworked.

� There may be more measurement features available on newer Android versions.
The app should be updated to collect these new features.

� The amount of participants can be increased in order to get more data for
analyses.

� The application could be ported to other platforms such as iOS to make mea-
surements on this devices available too.

� The webservice security should be enhanced. Authentication with credentials
should be considered in order to make it harder to attack.

64

Bibliography

[BP10] Becker, A. ; Pant, M.: Android 2: Grundlagen und Programmierung.
dpunkt-Verlag, 2010. � ISBN 9783898646772

[Gar12] Gartner: Gartner Says Worldwide Sales of Mobile Phones Declined 2.3
Percent in Second Quarter of 2012. 2012. � http://www.gartner.com/

it/page.jsp?id=2120015

[HKM10] Hashimi, S. ; Komatineni, S. ; MacLean, D.: Pro Android 2. Apress,
2010 (Apresspod Series Nr. 2). � ISBN 9781430226598

[Lab12a] Lab, Kaspersky: IT Threat Evolution: Q2 2012. 2012. �
http://www.securelist.com/en/analysis/204792239/IT_

Threat_Evolution_Q2_2012

[Lab12b] Labs, F-Secure: Mobile Threat Report Q2 2012. 2012. � http://www.f-

secure.com/weblog/archives/MobileThreatReport_Q2_2012.pdf

[O212] O2: All About You Report. June 2012. � http://news.o2.

co.uk/?press-release=Making-calls-has-become-fifth-

most-frequent-use-for-a-Smartphone-for-newly-networked-

generation-of-users

[sou] source.android.com: Android Security Overview. � http://source.

android.com/tech/security/index.html

[TWP07] Tews, Erik ;Weinmann, Ralf-Philipp ; Pyshkin, Andrei: Breaking 104
bit WEP in less than 60 seconds, 2007. � http://eprint.iacr.org/

2007/120.pdf

[Vie11] Viehböck, Stefan: Brute forcing Wi-Fi Protected Setup. December 2011.
� http://sviehb.files.wordpress.com/2011/12/viehboeck_wps.

pdf

[WC12] Wendy Connick, About.com G.: 7 Business Uses for a Smartphone.
August 2012. � http://sales.about.com/od/salesbasics/tp/7-

Business-Uses-For-A-Smartphone.htm

65

http://www.gartner.com/it/page.jsp?id=2120015
http://www.gartner.com/it/page.jsp?id=2120015
http://www.securelist.com/en/analysis/204792239/IT_Threat_Evolution_Q2_2012
http://www.securelist.com/en/analysis/204792239/IT_Threat_Evolution_Q2_2012
http://www.f-secure.com/weblog/archives/MobileThreatReport_Q2_2012.pdf
http://www.f-secure.com/weblog/archives/MobileThreatReport_Q2_2012.pdf
http://news.o2.co.uk/?press-release=Making-calls-has-become-fifth-most-frequent-use-for-a-Smartphone-for-newly-networked-generation-of-users
http://news.o2.co.uk/?press-release=Making-calls-has-become-fifth-most-frequent-use-for-a-Smartphone-for-newly-networked-generation-of-users
http://news.o2.co.uk/?press-release=Making-calls-has-become-fifth-most-frequent-use-for-a-Smartphone-for-newly-networked-generation-of-users
http://news.o2.co.uk/?press-release=Making-calls-has-become-fifth-most-frequent-use-for-a-Smartphone-for-newly-networked-generation-of-users
http://source.android.com/tech/security/index.html
http://source.android.com/tech/security/index.html
http://eprint.iacr.org/2007/120.pdf
http://eprint.iacr.org/2007/120.pdf
http://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
http://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
http://sales.about.com/od/salesbasics/tp/7-Business-Uses-For-A-Smartphone.htm
http://sales.about.com/od/salesbasics/tp/7-Business-Uses-For-A-Smartphone.htm

[WSW+12] Westerkamp, Jürgen ; Starrach, Mark ; Winkelvos, Timo ;
Heuser, Stephan ; Dunekacke, Dennis ; Scheuermann, Dirk ;
Bente, Ingo ; Lucius, Jens ; Jahnke, Marcel: Bericht AP4: Metadaten-
Modell, 2012

66

List of Figures

2.2 Usage of smartphones . 5

3.2 Subset of the domain independent abstract metamodel 14
3.3 Tree hierarchy with the abstract metamodel 15
3.4 Categories for Android usage scenario 22

4.1 Simple client server architecture . 47
4.2 The clients components . 48
4.3 Screenshots #1 . 50
4.4 Screenshots #2 . 51
4.5 Screenshots #3 . 52

5.1 Outgoing tra�c for WiFi connections 57
5.2 Incoming tra�c for WiFi connections 58
5.3 The measurement days . 59
5.4 Top 10 capabilities strings of seen access points 59
5.5 Overview of capabilities per device . 60
5.6 WPS enabled and total amount of devices 60
5.7 Overview of all protection levels used by devices 61
5.8 The most installed applications . 61

67

68

Listings

3.1 A simple entity class used for examples 17
3.2 A simple con�guration for db4o . 17
3.3 Opening or creating the database . 18
3.4 Opening or creating the database . 18
3.5 Query by Example. The result set contains all objects named Alice

with age equal to 33 . 18
3.6 Native query . 18
3.7 SODA Query API . 19
4.1 The webservice method with annotations 52
1 Webservice accepting POST-Data and stores �les in system after vali-

dating . 75

69

70

Appendix A

Android system permissions and

protection levels

Table A.1: Permissions and their protection levels provided by the android system.
API version 4.1 is used for generation of list

Permission Protection level
android.permission
SEND_SMS dangerous

CALL_PHONE dangerous

RECEIVE_SMS dangerous

RECEIVE_MMS dangerous

READ_SMS dangerous

WRITE_SMS dangerous

RECEIVE_WAP_PUSH dangerous

READ_CONTACTS dangerous

WRITE_CONTACTS dangerous

READ_CALENDAR dangerous

WRITE_CALENDAR dangerous

READ_USER_DICTIONARY dangerous

WRITE_USER_DICTIONARY normal

ACCESS_FINE_LOCATION dangerous

ACCESS_COARSE_LOCATION dangerous

ACCESS_MOCK_LOCATION dangerous

ACCESS_LOCATION_EXTRA_COMMANDS normal

INSTALL_LOCATION_PROVIDER signatureOrSystem

INTERNET dangerous

ACCESS_NETWORK_STATE normal

ACCESS_WIFI_STATE normal

71

ACCESS_WIMAX_STATE normal

BLUETOOTH dangerous

NFC dangerous

USE_SIP dangerous

ACCOUNT_MANAGER signature

GET_ACCOUNTS normal

AUTHENTICATE_ACCOUNTS dangerous

USE_CREDENTIALS dangerous

MANAGE_ACCOUNTS dangerous

MODIFY_AUDIO_SETTINGS dangerous

RECORD_AUDIO dangerous

CAMERA dangerous

VIBRATE normal

FLASHLIGHT normal

MANAGE_USB signatureOrSystem

HARDWARE_TEST signature

PROCESS_OUTGOING_CALLS dangerous

MODIFY_PHONE_STATE signatureOrSystem

READ_PHONE_STATE dangerous

WRITE_EXTERNAL_STORAGE dangerous

WRITE_SETTINGS dangerous

WRITE_SECURE_SETTINGS signatureOrSystem

WRITE_GSERVICES signatureOrSystem

EXPAND_STATUS_BAR normal

GET_TASKS dangerous

REORDER_TASKS dangerous

CHANGE_CONFIGURATION dangerous

RESTART_PACKAGES normal

KILL_BACKGROUND_PROCESSES normal

FORCE_STOP_PACKAGES signature

DUMP signatureOrSystem

SYSTEM_ALERT_WINDOW dangerous

SET_ANIMATION_SCALE dangerous

PERSISTENT_ACTIVITY dangerous

GET_PACKAGE_SIZE normal

SET_PREFERRED_APPLICATIONS signature

RECEIVE_BOOT_COMPLETED normal

BROADCAST_STICKY normal

WAKE_LOCK dangerous

SET_WALLPAPER normal

SET_WALLPAPER_HINTS normal

72

SET_TIME signatureOrSystem

SET_TIME_ZONE dangerous

MOUNT_UNMOUNT_FILESYSTEMS dangerous

MOUNT_FORMAT_FILESYSTEMS dangerous

ASEC_ACCESS signature

ASEC_CREATE signature

ASEC_DESTROY signature

ASEC_MOUNT_UNMOUNT signature

ASEC_RENAME signature

DISABLE_KEYGUARD dangerous

READ_SYNC_SETTINGS normal

WRITE_SYNC_SETTINGS dangerous

READ_SYNC_STATS normal

WRITE_APN_SETTINGS dangerous

SUBSCRIBED_FEEDS_READ normal

SUBSCRIBED_FEEDS_WRITE dangerous

CHANGE_NETWORK_STATE dangerous

CHANGE_WIFI_STATE dangerous

CHANGE_WIMAX_STATE dangerous

CHANGE_WIFI_MULTICAST_STATE dangerous

BLUETOOTH_ADMIN dangerous

CLEAR_APP_CACHE dangerous

READ_LOGS dangerous

SET_DEBUG_APP dangerous

SET_PROCESS_LIMIT dangerous

SET_ALWAYS_FINISH dangerous

SIGNAL_PERSISTENT_PROCESSES dangerous

DIAGNOSTIC signature

STATUS_BAR signatureOrSystem

STATUS_BAR_SERVICE signature

FORCE_BACK signature

UPDATE_DEVICE_STATS signatureOrSystem

INTERNAL_SYSTEM_WINDOW signature

MANAGE_APP_TOKENS signature

INJECT_EVENTS signature

SET_ACTIVITY_WATCHER signature

SHUTDOWN signature

STOP_APP_SWITCHES signatureOrSystem

READ_INPUT_STATE signature

BIND_INPUT_METHOD signature

BIND_WALLPAPER signatureOrSystem

73

BIND_DEVICE_ADMIN signature

SET_ORIENTATION signature

INSTALL_PACKAGES signatureOrSystem

CLEAR_APP_USER_DATA signature

DELETE_CACHE_FILES signatureOrSystem

DELETE_PACKAGES signatureOrSystem

MOVE_PACKAGE signatureOrSystem

CHANGE_COMPONENT_ENABLED_STATE signatureOrSystem

ACCESS_SURFACE_FLINGER signature

READ_FRAME_BUFFER signature

BRICK signature

REBOOT signatureOrSystem

DEVICE_POWER signature

FACTORY_TEST signature

BROADCAST_PACKAGE_REMOVED signature

BROADCAST_SMS signature

BROADCAST_WAP_PUSH signature

MASTER_CLEAR signatureOrSystem

CALL_PRIVILEGED signatureOrSystem

PERFORM_CDMA_PROVISIONING signatureOrSystem

CONTROL_LOCATION_UPDATES signatureOrSystem

ACCESS_CHECKIN_PROPERTIES signatureOrSystem

PACKAGE_USAGE_STATS signature

BATTERY_STATS normal

BACKUP signatureOrSystem

BIND_APPWIDGET signatureOrSystem

CHANGE_BACKGROUND_DATA_SETTING signature

GLOBAL_SEARCH signatureOrSystem

GLOBAL_SEARCH_CONTROL signature

SET_WALLPAPER_COMPONENT signatureOrSystem

ACCESS_CACHE_FILESYSTEM signatureOrSystem

COPY_PROTECTED_DATA signature

android.intent.category
MASTER_CLEAR.permission.C2D_MESSAGE signature

com.android.browser.permission
READ_HISTORY_BOOKMARKS dangerous

WRITE_HISTORY_BOOKMARKS dangerous

SET_ALARM normal

74

Appendix B

Webservice for an Android usage

study system

The following is the listing of the webservice.

1 /**
2 * F i l e : FeatureWebService . java
3 *

4 * Copyright (C) 2012 Hochschule Hannover
5 *

6 * Ric k l i n g e r Stadtweg 118 , 30459 Hannover , Germany
7 *

8 * Licensed under the Apache License , Version 2.0 (the
"License ") ; you may not

9 * use t h i s f i l e e xcep t in compliance wi th the License . You
may ob ta in a copy o f

10 * the License at
11 *

12 * h t t p ://www. apache . org / l i c e n s e s /LICENSE−2.0
13 *

14 * Unless r e qu i r ed by a p p l i c a b l e law or agreed to in
wr i t ing , so f tware

15 * d i s t r i b u t e d under the License i s d i s t r i b u t e d on an "AS
IS" BASIS , WITHOUT

16 * WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or
imp l i ed . See the

17 * License f o r the s p e c i f i c language governing permiss ions
and l im i t a t i o n s under

18 * the License .
19 *

20 */
21 package de . fhh . inform . t r u s t . aus . s e r v e r ;
22

23 import com . db4o . Db4oEmbedded ;
24 import com . db4o . EmbeddedObjectContainer ;
25 import com . db4o . c on f i g . AndroidSupport ;
26 import com . db4o . c on f i g . EmbeddedConfiguration ;
27 import com . db4o . c on f i g . UuidSupport ;
28 import com . db4o . c on s i s t en cy . ConsistencyChecker ;

75

29 import com . db4o . c on s i s t en cy . ConsistencyReport ;
30 import com . db4o . ext . Db4oException ;
31 import java . i o . * ;
32 import java . t ex t . DateFormat ;
33 import java . t ex t . SimpleDateFormat ;
34 import java . u t i l . Date ;
35 import javax . ws . r s . Consumes ;
36 import javax . ws . r s .POST;
37 import javax . ws . r s . Path ;
38 import javax . ws . r s . Produces ;
39 import javax . ws . r s . core . Context ;
40 import javax . ws . r s . core . HttpHeaders ;
41 import javax . ws . r s . core . MediaType ;
42 import javax . ws . r s . core . MultivaluedMap ;
43

44 @Path(" g ene r i c ")
45 public class FeatureWebService {
46

47 @Context
48 private javax . ws . r s . core . HttpHeaders context ;
49 private DateFormat dateFormat = new

SimpleDateFormat ("yyyyMMdd_HHmmss") ;
50 private St r ing [] nonVal idCharcters = new St r ing [] { " . " ,

" ' " , "−" , "/" , "\\" } ;
51 private St r ing uploadDir =

System . getProperty ("com . sun . aas . instanceRoot ") +
"/uploads " ;

52 private St r ing imei = null ;
53

54 public FeatureWebService () {
55 }
56

57 @POST
58 @Consumes(" binary / octet−stream")
59 @Produces (MediaType .TEXT_HTML)
60 public St r ing postData (byte [] data) {
61 i f (data != null && data . l ength > 0) {
62 MultivaluedMap<Str ing , Str ing> map =

context . getRequestHeaders () ;
63 imei = map . g e tF i r s t (" imei ") ;
64 i f (imei == null) {
65 imei = "unknown" ;
66 } else {
67 // v a l i d a t e
68 i f (imei . tr im () . l ength () != 64) {
69 return "Something goes wrong . " ;
70 }
71

72 for (S t r ing no : nonVal idCharcters) {
73 i f (imei . conta in s (no)) {
74 return "Something goes wrong . " ;
75 }
76 }
77 }

76

78 try {
79 new F i l e (uploadDir) . mkdirs () ;
80 St r ing f i l ename = uploadDir + ' / ' + imei +

"_" + dateFormat . format (new Date ()) +
" . db4o" ;

81 FileOutputStream out = new
FileOutputStream (f i l ename) ;

82 out . wr i t e (data) ;
83 out . c l o s e () ;
84 i f (checkDb4o (f i l ename , context)) {
85 return "Upload s u c c e s s f u l ! " ;
86 }
87 } catch (FileNotFoundException ex) {
88 } catch (IOException ex) {
89 }
90 }
91 return "Something goes wrong . " ;
92 }
93

94 private boolean checkDb4o (St r ing f i l ename , HttpHeaders
context) {

95 EmbeddedObjectContainer mDb4o = null ;
96 try {
97

98 EmbeddedConfiguration conf =
Db4oEmbedded . newConf igurat ion () ;

99 conf . common() . add (new UuidSupport ()) ;
100 conf . common() . add (new AndroidSupport ()) ;
101 mDb4o = Db4oEmbedded . openFi l e (conf , f i l ename) ;
102 ConsistencyChecker checker = new

ConsistencyChecker (mDb4o) ;
103 ConsistencyReport r epo r t =

checker . checkS lo tCons i s t ency () ;
104 i f (! r epo r t . c on s i s t e n t ()) {
105 throw new Db4oException () ;
106 }
107 mDb4o . c l o s e () ;
108 return true ;
109 } catch (Db4oException e r r) {
110 i f (mDb4o != null) {
111 mDb4o . c l o s e () ;
112 }
113 f ina l Writer r e s u l t = new Str ingWri te r () ;
114 f ina l PrintWriter pr intWr i te r = new

PrintWriter (r e s u l t) ;
115 e r r . pr intStackTrace (pr intWr i te r) ;
116 writeLog ("db4o_err . l og " ,

r e s u l t . t oS t r i ng () . getBytes ()) ;
117 new F i l e (f i l ename) . renameTo (new F i l e (f i l ename +

" . cor rupt ")) ;
118 }
119 return fa l se ;
120 }

77

121

122 private void writeLog (S t r ing path , byte [] data) {
123 FileOutputStream fp ;
124 try {
125 fp = new FileOutputStream (path) ;
126 fp . wr i t e (data) ;
127 fp . c l o s e () ;
128 } catch (Exception ex) {
129 }
130 }
131 }

Listing 1: Webservice accepting POST-Data and stores �les in system after validating

78

	Introduction
	Motivation
	Structure of paper
	Typographic conventions

	Smartphone usage and market share
	Overview
	Smartphone sales market
	Smartphone usage
	The Android plattform
	The software stack

	Development of an Android usage study system
	Requirements
	Requirements for the client application
	Requirements of webservice

	Approaches for an Android usage study system
	Data selection
	Data model
	Supported platforms
	Transport of data
	Storage of data

	Solution
	Domain-specific metamodel

	Design and implementation of software components
	Architecture of the Android usage study system
	Client application
	User interface
	Developement enviroment
	Delivering and installing

	Webservice
	Deploying
	Receiving data
	Storing the files

	Analysis of collected data
	Preliminary action
	Merging databases
	Droping out useless data sets
	Repairing broken hierarchies

	Exemplary analysis
	Overall stats
	Traffic statistics from WiFi adapter
	Scanned WiFi access points
	App usage

	Conclusion
	Summary
	Experiences
	Future work

	Android system permissions and protection levels
	Webservice for an Android usage study system

