

Trusted Network Connect (TNC)

4th European Trusted Infrastructure Summer School August / September 2009

Josef von Helden

University of Applied Sciences and Arts, Hanover josef.vonhelden@fh-hannover.de

Ingo Bente
Jörg Vieweg

Content

Introduction

- Network Access Control (NAC)
- Trusted Network Connect (TNC)
- Trust@FHH
 - TNC@FHH
 - tNAC
 - IF-MAP@FHH
- Conclusion

Introduction: Motivation

- Changing network structures
 - from static and homogeneous to dynamic and heterogeneous
 - mobile endpoints connect to and communicate with various networks
 - employees using their notebooks at home and at work
 - guest devices, e.g. consultants, students, ...
- Hackers adapting their strategies
 - attacking the weakest IT component of a network: endpoints
 - stay hidden, waiting for crucial moments e.g.
 - · spy on passwords,
 - eavesdrop on transactions,
 - doing evil work with the user's privileges after his/her successful authentication to a service

Introduction: IT security today

- More or less isolated security solutions for specific problems, e.g.
 - firewalls to protect the corporate network against attacks from the outside
 - virus scan engines to find malicious code
 - filter software against spam
 - IDS for alerting in case of suspicion of intrusion
- Seems to be not sufficient to counter present and future attacks, due to
 - changing network structures (s.a.)
 - changing attacks and attacker's profiles:
 from script kiddies to cybercrime professionals
 - hardness to track network wide security incidents

Introduction: Vision ...

- ... of a modern, effective IT security architecture
- Features
 - distributed
 - with respect to the higher importance of endpoint security
 - security begins at the edge of the network
 - checking of endpoints (integrity and authenticity) before joining the network and periodically thereafter
 - integrated
 - "Security goes inline": Integration into network devices (eg. switches, access points)
 - cooperative
 - interaction of technologies und tools
 - open / interoperable
 - open specification and standards allow communication between entities from different vendors
 - (centrally) manageble
- Trusted Network Connect (TNC) can play a major role towards such a modern, effective IT security architecture

Content

- Introduction
- Network Access Control (NAC)
- Trusted Network Connect (TNC)
- Trust@FHH
 - TNC@FHH
 - tNAC
 - IF-MAP@FHH
- Conclusion

NAC: Threats

- Compromised endpoints are a threat to any network they are connecting to
- Traditional security mechanisms like firewalls, IDS, VPNs, user authentication do not protect against those threats

Network Access Control (NAC)

NAC: Basic Functionalities

- User Authentication, e.g.
 - based on passwords or certificates
 - via VPN and IEEE 802.1X
- Integrity check of the computer system
 - configuration measurement before network access
 - e.g. installed software like antivirus scanner and firewall
 - compare measurements to policies of the network to access
 - re-assess accepted computer systems in regular intervals
- Policy Enforcement
 - enforce policy decisions
 - give non-compliant computer systems the chance for remediation

NAC: Typical Topology

NAC: Solutions

- NAC solutions are already available on the market
- The most prominent ones:
 - Cisco Network Admission Control (Cisco NAC)
 - Microsoft Network Access Protection (NAP)
- And many more:
 - Juniper Unified Access Control
 - StillSecure Safe Access
 - **–** ...

NAC: Requirements

- NAC solutions meet the basic requirements for checking the integrity status of endpoints "by definition".
- To gain significant benefit (at least) two important requirements have to be fulfilled
 - interoperability
 - enabling multi-vendor support
 - enabling customer's choice of security solutions and infrastructure
 - unforgeability
 - i.e. the network (resp. a security server in the network) can really trust in the integrity information provided by the endpoint (countering the "lying endpoint problem")

NAC: Limitations of Current Solutions

- Today, no available NAC solution meets the requirements of interoperability and unforgeability
 - Cisco's NAC and Microsoft's NAP are both proprietary by design
 - interoperability approaches
 - Microsoft opened their NAP-Client-Server-Protocol "SoH"
 - Cisco takes part in IETF WG "Network Endpoint Assessment"
 - NAC-components themselves can get compromised
 - e.g. shown on Cisco CTA at BlackHat conference 2007
- In general: unforgeability presumes having
 - (a) a hardware based root of trust which
 - (b) also is standardised to meet interoperability

Trusted Network Connect (TNC)

Content

- Introduction
- Network Access Control (NAC)

Trusted Network Connect (TNC)

- Trust@FHH
 - TNC@FHH
 - tNAC
 - IF-MAP@FHH
- Conclusion

TNC: Overview

- Open Architecture for NAC
 - specified by the TNC Subgroup of the TCG
 - all specifications are publicly available
 - enables multi-vendor interoperability
 - supports existing technologies (802.1X, EAP)
- TNC Handshake consists of 3 phases
 - Assessment
 - TNC Platform Authentication
 - Identity + integrity of platform
 - Isolation
 - Quarantine non-healthy endpoints
 - Remediation
 - Fix problems and make endpoint healthy again

[TNC Architecture for Interoperability Specification version 1.4 revision 4]

TNC: Required Roles

- Access Requestor (AR)
 - requests access to a protected network
 - typically the endpoint, e.g. notebook, desktop, ...
- Policy Decision Point (PDP)
 - performing the decision-making regarding the AR's request, in light of the access policies.
 - typically a network server

TNC: Optional Roles

- Policy Enforcement Point (PEP)
 - enforces the decisions of the PDP regarding network access
 - typically a switch, access point or VPN gateway
- Metadata Access Point (MAP)
 - store and provide state information about ARs
 - device bindings, user bindings, registered address bindings, authentication status, endpoint policy compliance status, endpoint behavior, authorization status, ...
- MAP Client (MAPC)
 - publish to, or consume from, the MAP state information about ARs

TNC: Provisioning and Remediation Layer

[TNC Architecture for Interoperability Specification version 1.4 revision 4]

TNC: TPM support

- One main advantage of TNC compared to other NAC solutions
 - supports use of the TPM during TNC Handshake
 - promising approach to solve the "lying endpoint problem"
 - goal: Ensure integrity of TNC subsystem located on the AR
- Idea: Use TPM capabilities during TNC Handshake
 - create integrity reports
 - including signed PCR values
 - AR sends integrity report to PDP
 - PDP compares received values to known good reference values
 - PDP can verify integrity of TNC subsystem
- AR cannot successfully lie about its current integrity state!

TNC: TPM support – additional components

- PTS (Platform Trust Services)
 - system service on the AR
 - exposes Trusted Platform capabilities to TNC components

- Further components
 - TPM (Trusted Platform Module)
 - Implements Trusted Platform's capabilities
 - TSS (Trusted Software Stack)
 - Exposes high level interface to TPM for applications
 - IML (Integrity Measurement Log)
 - Stores list of integrity measurements on AR

TNC: TPM extended architecture

[TNC Architecture for Interoperability Specification version 1.4 revision 4]

TNC: Reflecting Interoperability / Unforgeability

- Interoperability
 - generally:
 - fulfilled, because all specifications are publicly available
 - in reality:
 - some experiences with TNC@FHH (see below ...)
- Unforgeability
 - generally:
 - fulfilled because TPM support is integrated in the design of the architecture
 - in reality:
 - futher reasearch and devolopment needed (see tNAC slides below...)

Content

- Introduction
- Network Access Control (NAC)
- Trusted Network Connect (TNC)
- Trust@FHH
 - TNC@FHH
 - tNAC
 - IF-MAP@FHH
- Conclusion

Trust@FHH

- Research group at the University of Applied Sciences and Arts in Hanover, Germany
 - research in the area of Trusted Computing, focusing on Trusted Network Connect
- Projects
 - TNC@FHH:
 open source implementation of the TNC architecture
 - tNAC: research project sponsored by the Federal Ministry of Education and Research
 - IF-MAP@FHH: open source implementation of MAP/MAPC
- More information: trust.inform.fh-hannover.de

Content

- Introduction
- Network Access Control (NAC)
- Trusted Network Connect (TNC)
- Trust@FHH
 - -TNC@FHH
 - tNAC
 - IF-MAP@FHH
- Conclusion

TNC FHH

TNC@FHH: Features

- TNC Server running as an extension of FreeRADIUS
- Several IMC/IMV pairs
- IMC/IMV development framework
- Basic policy management
- Verified interoperability with other TNC implementations (Xsupplicant, wpa_supplicant, libtnc)
 - TNC plugfests 2008 and 2009
- Implemented in C++
- Completely open source

TNC@FHH: Architecture

TNC@FHH: Interoperability

- Results from TNC plugfests in 2008 and 2009
 - different TNC implementations (mainly open source) worked together (almost) without additional effort
 - high degree of interoperability
 - high quality of the TNC specifications
- TNC support by commercial products
 - only few commercial products support parts of the TNC specification
 - IF-IMC / IF-IMV to integrate IMC/IMV-pairs from different vendors
 - IF-PEP to support various PEPs
 - especially IF-TNCCS is at most supported as SOH-Version only
- TNC compliance program is under progress

TNC FHH

TNC@FHH in progress

- VPN meets TNC
- Privacy enhancements
- Interoperability with MS NAP (IF-TNCCS-SOH)
- Tools: tncsim

TNC@FHH in progress: VPN meets TNC (1)

- Objective
 - enabling TNC assessment through VPN connections
- Challenge
 - TNC assessment needs to be carried within the protocol used during the joining process
 - in case of VPN:
 - no 802.1x between AR and PEP
 - AR has an IP address assigned, so is reachable using TCP/IP by other systems

TNC@FHH in progress: VPN meets TNC (2)

- Common approach: enhancement of VPN software
 - high development effort (if possible at all)
 - support of IKEv2 and Multiple Authentication Exchanges (RFC 4739) is mandatory -> K.O. for mostly all present VPN solutions
- Our approach: TNC through VPN tunnel
 - generic approach works for (almost) every VPN software
 - VPN and TNC software only loosely coupled
 - no adaption of VPN software needed

TNC@FHH in progress: VPN meets TNC (3)

- Phase 1:
 - establish VPN tunnel
 - allow communication
 between AR and PDP only
 (e.g. through ACLs)
- Phase 2
 - TNC handshake through VPN tunnel using IF-T binding to TLS
 - on success: allow general communication of AR using IF-PEP

TNC@FHH in progress: Privacy enh. (1)

- Problem
 - user has little control over what information is shared during TNC assessment
 - network may ask for information the user considers privacy / security sensitive
 - not acceptable in an environment with multiple trust domains
- Our approach
 - client-side policies based upon IF-M
 - user can specify
 - which information is allowed to be shared
 - depending on the network he is connecting to
 - requires only little modifications to TNC architecture ...

TNC@FHH in progress: Privacy enh. (2)

TNC@FHH in progress: IF-TNCCS-SOH (1)

[TNC IF-TNCCS: Protocol Bindings for SoH version 1.0 revision 0.08, May 2007]

TNC@FHH in progress: IF-TNCCS-SOH (2)

- Issues
 - no compatability between IF-TNCCS-SoH and standard IF-TNCCS, e.g.
 - Type-Length-Value (TLV) vs. XML
 - only a single exchange of fixed size vs. multiple exchanges and no packet size restriction
 - even without using IMCs (SHAs) measurement of platform properties is possible
 - using Microsofts System Statement of Health (SSoH) message type
 - SSoH measures pre-defined properties, e.g. OS-Version, OS-Patchlevel

TNC@FHH in progress: IF-TNCCS-SOH (3)

- Our approach
 - version field of the IF-TNCCS packet specifies used version (IF-TNCCS or IF_TNCCS-SoH)
 - specialised IMV
 - "Standalone": no appropriate IMC required
 - parses incoming SSoH-messages and responds accordingly (with a SSoHR-message)
 - uses the pre-defined Microsoft Type-Values

TNC FHH

TNC@FHH tools: tncsim

- tncsim allows to test TNC components
 - locally on one machine
 - without setting up a test LAN (PEP, PDP on the same machine)
 - AR can be on the same or another machine in the network
- Supports different TNC implementations
 - TNC@FHH
 - libtnc
 - wpa_supplicant
 - Xsupplicant
- Makes development work a lot easier

Content

- Introduction
- Network Access Control (NAC)
- Trusted Network Connect (TNC)
- Trust@FHHTNC@FHH
 - -tNAC
 - IF-MAP@FHH
- Conclusion

tNAC: the project

- Research Project:
 - started on July, 1st 2008
 - scheduled for 3 years
- Consortium consisting of
 - University of Applied Sciences and Arts Hanover
 - University of Applied Sciences Gelsenkirchen
 - Ruhr-University Bochum
 - Datus AG
 - Sirrix AG
 - Steria Mummert Consulting AG
 - and some other companies
- Sponsored by the Federal Ministry of Education and Research

SPONSORED BY THE

tNAC: Objectives

- Develop a Trusted Network Access Control Solution
 - TNC compatible NAC solution with full TPM support
- Analyse requirements & evaluate effectiveness of tNAC
 - based upon real world scenarios
- Participate in TCG's specification process
 - contribution to IF-M between PTS-IMC/IMV
- Management
 - keep (t)NAC manageable (Policy-Manager, Management-Console)
 - focus on usability as well as technology

tNAC: Turaya and TNC@FHH

- Combine results of two research projects
- Turaya
 - open source security platform
 - developed by the former EMSCB-Project
 - supports strong isolation of security critical processes in "compartments"
- TNC@FHH
 - open source based implementation of TNC
 - developed at University of Sciences, Hanover
 - implements all core TNC components/layers/interfaces
 - no TPM support ... yet

tNAC: Adoption of TNC in real world scenarios

- security benefit of a TNC solution is evident and desired (by companies)
- several handicaps prevent the adoption today, especially
 - high complexity of policy definition and enforcement
 - efforts and investments required for integration of TNC into the existing IT infrastructure
 - today's impossibility to achieve unforgeability
 - mainly due to the lack of TPM support in standard operating systems
 - missing overall view of network security state
 - lack of cooperation between various security tools

Trust@FHH

tNAC: coming back to unforgeability...

... remember the TPM extended architecture

tNAC: PTS features

- Creates integrity reports
 - makes them available to IMCs / TNCC
 - enables them to be used during TNC Handshake
 - ensures that they are rendered in an standardised format
 - TCG Schema Specifications
- Measures integrity status of ...
 - TNC components
 - on disk & in memory measurements
 - appends measurements to IML
- Why should one trust the PTS?

tNAC: PTS & The Chain of Trust

- PTS must be part of the Chain of Trust
 - measure PTS before execution
 - not supported by "normal" OS
 - need for a Trusted OS
- PTS responsible for measuring (at least) TNC components
 - TNC components become part of Chain of Trust, too
- Benefit
 - Chain of Trust up to Application Level
 - especially including TNC components on the AR
 - integrity of TNC subsystem can be ensured
 - no lying endpoint problem anymore
- How are integrity reports communicated between AR and PDP?

tNAC: PTS IMC/IMV

- Special IMC/IMV pair
 - What ?
 - responsible for communicating integrity reports
 - PTS-IMC interfaces with PTS to obtain integrity reports
 - communicates them to PTS-IMV during TNC handshake
 - PTS-IMV evaluates received integrity reports
 - How ?
 - open issue
 - IF-M protocol between IMC/IMV generally implementation specific
 - TCG expects to standardise widely useful IF-M protocols
 - like IF-M between PTS-IMC/IMV
 - essential for interoperability between a PTS-IMC and a PTS-IMV from different vendors

tNAC: Establishing TNC Subsystem Integrity

TNAC

trusted network access control

- Collection of Integrity Data
 - Pre-OS Boot
 - Starting from RTM : BIOS, OS-Loader, OS-Image
 - Pre-PTS Startup
 - OS must measure PTS (including TSS)
 - PTS Operation
 - Measure TNC components (NAR, TNCC, PTS-IMC, further IMCs)
 - Render measurements in interoperable format
 - PTS-IMC Collection
 - Obtain Integrity report containing Chain of Trust from PTS
- Reporting to PTS-IMV via IF-M
 - PTS-IMV evaluates integrity report
 - Provides access decision along with all other IMVs

tNAC: Further Integrity Checks

- Motivation
 - check integrity of further applications on the AR
 - E.g. Anti Virus, Firewall ... in addition to its configuration
- (At least) two possible approaches
 - Application specific IMC/IMV pair interacting with PTS
 - IMC/IMV pair measures configuration and integrity
 - needs to interact with PTS ... standardised but quite advanced
 - What about standardised IF-M?
 - PTS-IMC/IMV measures further integrity aspects
 - IF-M must support that PTS-IMV requests integrity checks of arbitrary components
 - no need for application specific IMC/IMV pair to care about PTS
 - very complex process of decision making

tNAC in progress: PTS-IMC/IMV approach

- Cross over communication
 - any IMV can request integrity measurements from an AR
 - only the PTS-IMC issues the necessary measurements
 - all measurements are encapsulated in one Integrity Report
 - all IMVs verify their specific part of the IR with the PTS

IF-MAP@FHH in progress: MAP Server

- Started in September 2008 (project of master students)
- Work in progress
- Current status
 - implementation based upon Java Web Services
 - (SOAP/HTTP, WSDL, Apache CXF)
 - most functions of IF-MAP API are implemented
 - establishing a session
 - publish / subscribe
 - basic search operations
- so far no real MAP clients
 - SOAP UI was used to generate test messages

IF-MAP@FHH in progress: MAP Clients

- Project of bachelor students will start in September 2009
 - 14 students
 - scheduled for 12 months
- Objectives
 - improve implementation of existing MAP server
 - Especially regarding data model / search operations
 - develop reasonable MAP clients
 - Snort
 - iptables
 - dhcp
 - nagios
 - TNC@FHH

Content

- Introduction
- Network Access Control (NAC)
- Trusted Network Connect (TNC)
- TNC@FHH
- tNAC

Conclusion

Conclusion (1/3)

- TNC has some very important features to act as part of a modern, effective IT security architecture
 - distributed and integrated (general NAC features)
 - interoperable
 - due to its openness
 - unforgeable (by design)
 - thus potentially very effective
 - cooperative
 - due to the MAP approach
 - (manageability is out of scope of the TNC spec)

Conclusion (2/3)

- Some issues
 - unforgeability is well designed in theory but hard to achieve in real world scenarios (need for TrustedOS, chain of trust, ...)
 - (too) high complexity of measurement and remote attestation in real world scenarios
 - privacy
 - user has little control over what information is revealed to third parties
 - specification and standardisation (also beyond TCG) is still in progress
 - see also: IETF Network Endpoint Assessment (NEA) working group
 - MAP approach is a bit "hidden" as being part of the limited area of TNC/NAC
 - MAP could have a much broader importance and relevance towards a cooperative approach in an overall security architecture

Conclusion (3/3)

- The need for solutions like TNC will grow according to
 - the increasing importance of endpoint security for the overall network security and
 - the strongly increasing security threats to endpoints.
- TCG and many others (like Trust@FHH) are working on further developments and enhancements required for a real interoperable, real trusted NAC solution and finally a modern, effective IT security architecture.

Further readings (1/2)

- Home of Trust@FHH: http://trust.inform.fh-hannover.de
- Home of FreeRADIUS: http://freeradius.org/
- Home of Project libtnc: http://sourceforge.net/projects/libtnc
- Homepage of wpa supplicant: http://hostap.epitest.fi/wpa supplicant/
- Homepage of XSupplicant: http://open1x.sourceforge.net/
- Home of EMSCB project: http://www.emscb.com/
- Roecher Dror-John, Thumann Michael, NACATTACK. In: Black Hat Europe 2007, http://www.blackhat.com/html/bh-europe-07/bh-eu-07-speakers.html

Further readings (2/2)

- TNC specs: http://www.trustedcomputinggroup.org/developers/ trusted network connect/specifications
 - TNC IF-IMC, Specification Version 1.2, February 2007
 - TNC IF-IMV, Specification Version 1.2, February 2007
 - TNC IF-MAP binding for SOAP, Specification Version 1.1, May 2009
 - TNC IF-PEP: Protocol Bindings for RADIUS, Specification Version 1.1, February 2007
 - TCG Infrastructure Working Group, Platform Trust Services Interface Specification (IF-PTS), Specification Version 1.0, November 2006, In: http://www.trustedcomputinggroup.org/developers/infrastructure/specifications
 - TNC IF-TNCCS: Protocol Bindings for SoH, Specification Version 1.0, May 2007
 - TNC IF-T: Protocol Bindings for Tunneled EAP Methods, Specification Version 1.1, May 2007
 - TNC IF-T: Binding to TLS, Specification Version 1.0, May 2009
 - TNC IF-TNCCS, Specification Version 1.2, May 2009
 - TNC Architecture for Interoperability, Specification Version 1.4, May 2009