Trusted Network Access Control

 \rightarrow Experiences from Adoption

Joerg Vieweg joerg.vieweg@fh-hannover.de Trust@FHH Research Group University of Applied Sciences and Arts Hanover https://trust.inform.fh-hannover.de

Agenda

Introduction

- Network Access Control
- Trusted Network Connect
- Projects
- Summary

Introduction → Motivation

Current Situation

- Networking steadily increases
 - in and between companies
 - public networks (e.g. internet)
- Critical Applications
 - B2B transactions, home banking and many more
- Critical Infrastructure
 - Communications-Networks itself
 - public power grid

Introduction → Motivation

Current Situation

- Threats
 - software vulnerabilities (e.g. buffer overflows)
 - Viruses, Malware
 - ...

Problem

- Countermeasures protect Network against threats from "outside"
- what about threats which are "carried" into the network
 - e.g. employee who uses notebook also at home or as field worker

Introduction → Current security technologies

- Network access protected mainly by
 - User authentication
 - Firewalls,
 - VPNs, ...

Internet VPN VPN Gateway Organisation A

- But
 - No integrity checks of connecting or connected computer systems
 - No differentiation between trustworthy and not trustworthy computer systems

Consequences

 Connecting device may be a threat for the otherwise protected network

Introduction → Need for new approaches

- There's a need for new technologies which
 - make an access decision before a device get (full) network access
 - permit access to computer systems with trusted configuration
 - deny access to computer systems with untrusted configuration

Approach

Network Access Control (NAC)

Introduction

Network Access Control

- Trusted Network Connect
- Projects
- Summary

Network Access Control → Functions (1/2)

- User Authentication
 - User Authentication (e.g. password or certificates)
 - e.g. VPN and IEEE 802.1X
- Configuration Assessment
 - Configuration measurement **before** network access is granted
 - e.g. installed software like antivirus scanner and Firewall
 - Compare measurements to policies of the network to access
 - → Integrity check of the computer system
 - Re-assess accepted computer systems in regular intervals
- Policy Enforcement
 - Enforce policies to non-compliant computer systems

Network Access Control → Topology

Network Access Control → Solutions

- NAC solutions already available on the market
- The most prominent:
 - Cisco Network Admission Control (Cisco NAC)
 - Microsoft Network Access Protection (NAP)
- And many more:

. . .

- Juniper Unified Access Control
- StillSecure Safe Access

Network Access Control → Limitations of current solutions (1/3)

Lack of trust in the measurements The "lying endpoint problem"

- Caused by current OS without isolation of components
- Measured components can get compromised
- NAC-components can get compromised too
 - Shown on Cisco CTA at BlackHat conference 2007
- Achieve more trustworthiness based on measurements which are not trustworthy?

Lack of trust in NAC enabled networks

- User can't control collected data
- Possible privacy issues

Network Access Control → Limitations of current solutions (2/3)

- No Standards, no compatibility by design
- First approaches
 - Client sided compatibility of Cisco NAC and NAP
 - Microsoft opened their NAP-Client-Server-Protocol "SoH"
 - Compatibility of "smaller" solutions to Cisco NAC, NAP or TNC
 - e.g. StillSecure Safe Access
 - Two (but one) approaches for standardization
 - TCG: Trusted Network Connect (TNC)
 - IETF: Network Endpoint Assessment (NEA) using TNC as outline
 - Goal: Standardize the Client-Server-Protokolls

Network Access Control → Limitations of current solutions (3/3)

- Platform independence
 - Support for every common OS is essential
 - Current NAC solutions support primarily Microsoft products

Political challenges

"Who defines what is considered as being trustworthy?"

- Vendors of NAC and/or security solutions?
- Network operator?
- Third Party?
- All together?

- Einführung
- Network Access Control

Trusted Network Connect

- Projects
- Summary

Trusted Network Connect

→ Overview

- Open Architecture for NAC
 - Specified by the TNC Subgroup of the TCG
 - All specifications are publically available
 - Enables multi-vendor interoperability
 - Supports existing technologies (802.1X, EAP)
- TNC Handshake consists of 3 phases
 - Assessment
 - TNC Platform Authentication
 - Identity + integrity of platform
 - Isolation
 - Quarantine non-healthy endpoints
 - Remediation
 - Fix problems and make endpoint healthy again

Trusted Network Connect → Basic Architecture

[TNC Architecture for Interoperability Specification version 1.3 revision 6]

Trusted Network Connect → TPM Support

- One main advantage of TNC compared to other NAC solutions
 - Supports use of the TPM during TNC Handshake
 - Promising approach to solve the "lying endpoint problem"
 - Goal: Ensure integrity of TNC subsystem located on the AR
- Idea: Use TPM capabilities during TNC Handshake
 - Create integrity reports (signed)
 - AR sends integrity report to PDP
 - PDP compares received values to known good reference values
 - PDP can verify integrity of TNC subsystem

AR cannot successfully lie about its current integrity state!

Trusted Network Connect → TPM Support - additional components

- PTS (Platform Trust Services)
 - System service on the AR
 - Exposes Trusted Platform capabilities to TNC components

Further components

- TPM (Trusted Platform Module)
 - Implements Trusted Platform's capabilities
- TSS (Trusted Software Stack)
 - Exposes high level interface to TPM for applications
- IML (Integrity Measurement Log)
 - Stores list of integrity measurements on AR

Trusted Network Connect

→ TPM Extended Architecture

Trusted Network Connect → PTS Features

- Creates integrity reports
 - Makes them available to IMCs / TNCC
 - Enables them to be used during TNC Handshake
 - Ensures that they are rendered in an standardized format
 - TCG Schema Specifications

Measures integrity status of ...

- TNC components
- On disk & in memory measurements
- Appends measurements to IML

Why should one trust the PTS ?

Part of the so called Chain of Trust

Trusted Network Connect → Chain of Trust

- Transitive measurement chain
 - started at the Root of Trust for Measurement (Trust Anchor)
 - components are measured before they are started
 - measurement values are safely stored
 - result is a integrity statement about the platform
 - compromising of components can be detected when checking integrity value against known good values
 - PTS part of the Chain of Trust

Trusted Network Connect → Further Integrity Checks

- Motivation
 - Check integrity of further applications on the AR
 - E.g. Anti Virus, Firewall ... in addition to its configuration
- Application specific IMC/IMV pair interacting with PTS
 - IMC/IMV pair measures configuration and integrity
 - Needs to interact with PTS ... standardized but quite involved
 - What about standardized IF-M?

Agenda

- Introduction
- Network Access Control
- Trusted Network Connect

Projects

Summary

Projects→ Introduction

- Currently, three projects with trust@fhh research group involvement
 - TNC@FHH
 - IFMAP@FHH
 - tNAC

Projects → TNC@FHH

- TNC@FHH
 - Open source based implementation of TNC
 - Developed at University of Applied Sciences and Arts Hannover
 - Implements all core TNC components/layers/interfaces
 - No TPM support ... yet
 - Been tested within several TNC Environments
 - No AR component
 - relies on standalone products
 - wpa_supplicant
 - XSupplicant
 - only support for 802.1X... yet
 - used within the tNAC-Project

tNAC → The Project

- Research Project:
 - Started on July, 1st 2008
 - Scheduled for 3 years
- Consortium consisting of
 - University of Applied Sciences Gelsenkirchen
 - University of Applied Sciences and Arts Hannover
 - Ruhr-Universität Bochum
 - Datus AG
 - Sirrix AG
 - Steria Mummert Consulting AG
- Sponsored by the Federal Ministry of Education and Research

Federal Ministry of Education and Research

SPONSORED BY THE

- Develop a Trusted Network Access Control Solution
 - TNC compatible NAC solution with full TPM support
- Integration of a security Platform
 - Turaya (EMSCB)
- Participate in TCG's specification process
 - Contribution to IF-M between PTS-IMC/IMV
- Management
 - Keep (t)NAC manageable (Policy-Manager, Management-Console)
 - Focus on usability as well as technology

Projects → IFMAP@FHH

- Another Project, besides the direct TNC-Context:
 - IFMAP@FHH
- Implements TCG's IF-MAP specification
 - Server component:
 - MAP: Metadata Access Point
 - Component which collects network-related information and makes those information available for use
 - Client components
 - possess context-related information (e.g. firewall knows sth. about blocked traffic)
 - send (publish) those information to the MAP Server
 - receive (subscribe) information from the MAP Server for further use (e.g. firewall responding to threats detected by the IDS)

Agenda

- Introduction
- Network Access Control
- Trusted Network Connect
- Projects

Summary

Summary

- Endpoint becoming critical point
- Lack of trust against the Endpoint
- NAC concept seems to be a good approach
- Current solutions can't achieve the promised trust level
- TNC is open and supports the utilization of the TPM
 - may need more work...
- Several OSS Projects showing that Trusted Computing an OS works together

Trusted Network Access Control

Thank You

Joerg Vieweg joerg.vieweg@fh-hannover.de Trust@FHH Research Group University of Applied Sciences and Arts Hanover https://trust.inform.fh-hannover.de

