
Fachhochschule Hannover
Faculty IV - Department of Computer Science
Trust@FHH Research Group
http://trust.inform.fh-hannover.de
trust@f4-i.fh-hannover.de

tnc@fhh developer documentation

imunit

A framework for the development of IMC/IMV components according to the TNC
architecture. For imunit version 0.6.0.

Ingo Bente

September 15, 2009

1 Introduction

The imunit package is part of the tnc@fhh software. tnc@fhh1 is an open source
implementation of the TNC architecture specified by the Trusted Computing Group.
The imunit package provides an easy to use framework for the development of new
IMC/IMV pairs. imunit compiles and runs on many Unix-like systems. Windows
is currently not supported. However, we assume that Windows-support would need
only minor modifications of the build process.2 This document describes the imunit
package from a developer’s perspective. Classes and interfaces that are necessary for
the development of new IMC/V pairs will be discussed in detail.

2 Coverage

The following TNC interfaces are supported by imunit

• IF-IMC 1.2 (http://www.trustedcomputinggroup.org/resources/tnc_ifimc_
specification)

• IF-IMV 1.2 (http://www.trustedcomputinggroup.org/resources/tnc_ifimV_
specification)

1Old wording is TNC@FHH (uppercase)
2Appropriate patches are very welcome ...

1

http://trust.inform.fh-hannover.de
mailto:trust@f4-i.fh-hannover.de
http://www.trustedcomputinggroup.org/resources/tnc_ifimc_specification
http://www.trustedcomputinggroup.org/resources/tnc_ifimc_specification
http://www.trustedcomputinggroup.org/resources/tnc_ifimV_specification
http://www.trustedcomputinggroup.org/resources/tnc_ifimV_specification

Figure 1: Architecture overview for imunit

To demonstrate the use of imunit for the development of new IMC/V pairs, this
imunit-dev package contains a very basic ExampleIMC/V pair. This IMC/V pair
implements very few functions and should serve as starting point for your own IMC/V
pairs.

3 Architecture of imunit

Figure 1 gives an overview of the imunit package. The components and their functions
will be described in the following.

3.1 Structure of Directories

The imunit package contains the following directories:

• ./build empty directory for build artifacts

• ./cmake_modules cmake find and install scripts

• ./include TCG header files

• ./src/imunit imunit source code

• ./src/imunit/exception source code for imunit-specific exceptions

• ./src/imunit/imc imc-specific source code (IF-IMC)

2

• ./src/imunit/imv imv-specific source code (IF-IMV)

3.2 Overall Design, Classes, Functions

On Unix-like Systems, IMCs and IMVs are provided as shared objects (*.so). The
IMC/V modules can be used via the IF-IMC/V interface. These interfaces are specified
as C-functions. However, the imunit package is mostly written in C++, allowing us
to use an object-oriented design internally.

Besides the C/C++ mapping, there is another interesting issue regarding the in-
stantiation of objects: in imunit, there is one class that represents the shared library
itself (named IMCLibrary/IMVLibrary). Normally, for a specific IMC or IMV shared
library, there will be one object of this class for each TNCC/TNCS running on a plat-
form. To address the issue that a TNCC/TNCS can handle multiple connections in
parallel, there needs to be a connection-based representation of an IMC/IMV. This
representation is provided by the AbstractIMC/AbstractIMV class. Normally, there
will be one object of this class for each connection that is handled by a TNCC/TNCS
on a platform. As a developer of an IMC/V pair, you have to provide your own im-
plementation of IMCLibrary and AbstractIMC or IMVLibrary and AbstractIMV by
inhereting from the classes of the imunit package. The good thing is that you do not
have to deal with plain C this way.

In the following, we will give a short description of each class available in the imunit
package. How they can be used to develop a simple ExampleIMC/V will be discussed
in section 4.

3.2.1 General Classes

IMUnitLibrary This class encapsulates the similarities of an IMC and an IMV library.
There is exactly one instance of this class for each TNCC or TNCS that uses the
corresponding IMC or IMV library. The main purpose of this class is to provide
general information about the library (name, message types used) and to handle the
(de)initialization process. Direct known subclasses are IMCLibrary and IMVLibrary.

AbstractIMUnit This class encapsulates the similarities of an IMC and an IMV in-
stance that is bound to a specific connection. The connection is handled via the TNCC
or the TNCS. There is normally one instance of this class for each ongoing connection.
The class implements methods that are available for IMCs and for IMVs (notifyCon-
nectionChange(), batchEnding() and receiveMessage()). Direct known subclasses are
AbstractIMC and AbstractIMV.

ResultException A simple exception class. Extends std::exception. This class
can carry a TNC_Result return value. Exceptions of this class are used internally
in the imunit package to handle errors in a more convenient way than it is possible
with simple return values. If a TNCC/TNCS must be notified about an error, the
ResultException can be easily mapped to a simple TNC_Result value that is return by
an interface C-function. This class has no known subclasses.

3

3.2.2 IMC-specific Classes

IMCLibrary This class inherits from IMUnitLibrary and encapsulates all IMC spe-
cific functionalities of an IMC library. This class multiplexes incoming calls from an
TNCC to a conrete instance of AbstractIMC. Furthermore, it holds all pointers to the
TNCC functions as specified by IF-IMC. IMC developers must extend this class to
implement their own IMC library. IMCLibrary defines a pure virtual factory method
(createNewImcInstance()) that must be implemented by the IMC developer.

AbstractIMC This class inherits from AbstractIMUnit. It represents instances of an
IMC that are bound to a certain connection. It manages the state of a concrete IMC
related to a given connection ID. IMC developers must extend this class to implement
their own IMC. This class defines a pure virtual method (beginHandshake()) that must
be implemented by the IMC developer.

TNCC This is an interface class that encapsulates all TNCC functions of the IF-
IMC interface. It allows AbstractIMC (and the sub-classes implemented by an IMC
developer) to call the TNCC via an instance of this class (instead of directly using
C-function pointers). TNCC has no known sub-classes.

IFIMCImpl.cpp (deprecated) This ”‘class”’ is actually no class. It contains the map-
ping from C to C++ for the IMC functions of IF-IMC. Note: This file is empty since
version 0.6.0. Its content has been moved to the TNCFHH_IMCLIBRARY_INITIALIZE
macro in IMCLibrary.h. The file will be removed from imunit in the next release.

3.2.3 IMV-specific Classes

IMVLibrary This class inherits from IMUnitLibrary and encapsulates all IMV spe-
cific functionalities of an IMV library. This class multiplexes incoming calls from an
TNCS to a conrete instance of AbstractIMV. Furthermore, it holds all pointers to the
TNCS functions as specified by IF-IMV. IMV developers must extend this class to
implement their own IMV library. IMVLibrary defines a pure virtual factory method
(createNewImvInstance()) that must be implemented by the IMV developer.

AbstractIMV This class inherits from AbstractIMUnit. It represents instances of an
IMV that are bound to a certain connection. It manages the state of a concrete IMV
related to a given connection ID. IMV developers must extend this class to implement
their own IMV.

TNCS This is an interface class that encapsulates all TNCS functions of the IF-
IMV interface. It allows AbstractIMV (and the sub-classes implemented by an IMV
developer) to call the TNCS via an instance of this class (instead of directly using
C-function pointers). TNCS has no known sub-classes.

4

IFIMVImpl.cpp (deprecated) This ”‘class”’ is actually no class. It contains the map-
ping from C to C++ for the IMV functions of IF-IMV. Note: This file is empty since
version 0.6.0. Its content has been moved to the TNCFHH_IMVLIBRARY_INITIALIZE
macro in IMVLibrary.h. The file will be removed from imunit in the next release.

4 An ExampleIMC/V pair

This section is a step-by-step guide that explains how to code your own IMC/V based
upon imunit.

4.1 Coding the ExampleIMC

1. Create a class ExampleIMCLibrary that extends IMCLibrary.

a) Define the message types for your IMC. Normally, each IMC has its own
message type3 (done in ExampleIMCLibrary.h). The message type is used
for two purposes: 1) it is used to indicate the type of messages send to the
TNCC and 2) it is used to tell the TNCC which message types the IMC is
interested in receiving.

/* define Vendor ID (see IANA PEN). */
#define VENDOR_ID 0x0080ab
/* define Messagesubtype */
#define MESSAGE_SUBTYPE 0xfe

b) Implement a ctor (and dtor if necessary). Add your message type defined
above to the list of message types the IMC wants to receive.

ExampleIMCLibrary :: ExampleIMCLibrary ()
{

LOG4CXX_INFO(logger , "Load ExampleIMC library ");
/* set all attributes inherited from tncfhh ::iml:: IMCLibrary */
// the library name for logging
this ->imUnitLibraryName = "ExampleIMC";
// add an messageType composed of Vendor ID (IANA PEN) and

MessageSubtype
this ->addMessageType(VENDOR_ID , MESSAGE_SUBTYPE);

}

c) Initialize the imunit framework (done in ExampleLibrary.cpp). This defines
the C-functions interface according to IF-IMC and maps those functions to
C++ methods of imunit. You must provide the class name of your Exam-
pleIMCLibrary implementation as argument. This causes the framework to
create an instance of ExampleIMCLibrary within the initialization macro.

// TNC@FHH IMCLibrary Initialization +
// implement IF-IMC c-functions
TNCFHH_IMCLIBRARY_INITIALIZE(ExampleIMCLibrary) ;

d) Implement the pure virtual factory method. This method creates a new
instance of the ExampleIMC class (described in step 2). The method is
called when a new connection is created. The memory is freed when the
same connection is deleted.

3This will likely change when IF-M is released.

5

tncfhh ::iml:: AbstractIMC *ExampleIMCLibrary :: createNewImcInstance(
TNC_ConnectionID conID)

{
LOG4CXX_TRACE(logger , "createNewImcInstance(" << conID << ")");
// just return a new instance of ExampleIMC
return new ExampleIMC(conID , this);

}

2. Create a class ExampleIMC that extends AbstractIMC.

a) Define the ctor (and dtor if necessary). The ctor needs the connection
ID and a pointer to the corresponding ExampleIMCLibrary as arguments.
Internally, this causes the instantiation of a TNCC object which can forward
the calls to the “real” TNCC via the pointer to the ExampleIMCLibrary
(which holds the function pointers to the “real” TNCC). The benefit is:
you as IMC developer can call methods of the TNCC instantiation to talk
to the “real” TNCC.

ExampleIMC :: ExampleIMC(TNC_ConnectionID conID , ExampleIMCLibrary *
pExampleIMCLibrary)

:AbstractIMC(conID , pExampleIMCLibrary)
{

// initialize
}

b) Implement the (pure virtual) mandatory beginHandshake() method. In
this case, our IMC sends a first message to its ExampleIMV (by calling
sendMessage() of the TNCC).

TNC_Result ExampleIMC :: beginHandshake ()
{

LOG4CXX_TRACE(logger , "beginHandshake ()");
// this message should be send to ExampleIMV
std:: string sendMessage("Example message from ExampleIMC");
LOG4CXX_TRACE(logger , "Send Message: " << sendMessage);
// send message
this ->tncc.sendMessage ((unsigned char*) sendMessage.c_str (),

sendMessage.size()+1/*for ’\0’*/, VENDOR_ID , MESSAGE_SUBTYPE);
// return all ok
return TNC_RESULT_SUCCESS;

}

c) Implement optional methods. These are already implemented by the imunit
framework. But normally, to have them behave in a reasonable (from the
IMC developers point of view) manner, these should be overwritten. We
will override all optional methods.

i. Implement receiveMessage(). This is called to deliver a message from
the IMV which was received by the TNCC to the IMC. Here, our IMC
just sends another message.

TNC_Result ExampleIMC :: receiveMessage(TNC_BufferReference message ,
TNC_UInt32 messageLength , TNC_MessageType messageType)

{
LOG4CXX_DEBUG(logger , "receiveMessage round " << this ->getRound

());
// print received message dirty out. WARNING: don’t ape this ,
// message should end with non -null! Heed: Message can be evil!
LOG4CXX_INFO(logger , "Received Message: " << message);

6

// this message should be send to ExampleIMV
std:: string sendMessage("Another example message from ExampleIMC

.");
LOG4CXX_INFO(logger , "Send Message: " << message);
// send message
this ->tncc.sendMessage ((unsigned char*) sendMessage.c_str (),

sendMessage.size()+1/*for ’\0’*/, VENDOR_ID , MESSAGE_SUBTYPE)
;

// return all ok
return TNC_RESULT_SUCCESS;

}

ii. Implement batchEnding(). Here, it basically does nothing.
TNC_Result ExampleIMC :: batchEnding ()
{

LOG4CXX_TRACE(logger , "batchEnding");
// return all ok
return TNC_RESULT_SUCCESS;

}

iii. Implement notifyConnectionChange(). The new connection state can
be queried via the getConnectionState() method. Here, it basically does
nothing. Normally, you would change the state of your IMC according
to the connection state.

TNC_Result ExampleIMC :: notifyConnectionChange ()
{

LOG4CXX_TRACE(logger , "notifyConnectionChange");
/* if new handshake start */
if(this ->getConnectionState () == TNC_CONNECTION_STATE_HANDSHAKE)
/* reset IMC */;
// return all ok
return TNC_RESULT_SUCCESS;

}

3. Finished. Thats all for the IMC part.

4.2 Coding the ExampleIMV

Coding the ExampleIMV conceptually works the same as coding the ExampleIMC.
There are only minor differences regarding which methods must be overwritten/im-
plemented.

1. Create a class ExampleIMVLibrary that extends IMVLibrary.

a) Define the message types for your IMV. Normally, each IMV has its own
message type4 (done in ExampleIMVLibrary.h). The message type is used
for two purposes: 1) it is used to indicate the type of messages send to the
TNCS and 2) it is used to tell the TNCS which message types the IMV is
interested in receiving.

/* define Vendor ID (see IANA PEN). */
#define VENDOR_ID 0x0080ab
/* define Messagesubtype */
#define MESSAGE_SUBTYPE 0xfe

4This will likely change when IF-M is released.

7

b) Implement a ctor (and dtor if necessary). Add your message type defined
above to the list of message types the IMV wants to receive.

ExampleIMVLibrary :: ExampleIMVLibrary ()
{

LOG4CXX_INFO(logger , "Load ExampleIMV library ");
/* set all attributes inherited from tncfhh ::iml:: IMVLibrary */
// the library name for logging
this ->imUnitLibraryName = "ExampleIMV";
// add an messageType composed of Vendor ID (IANA PEN) and

MessageSubtype
this ->addMessageType(VENDOR_ID , MESSAGE_SUBTYPE);

}

c) Initialize the imunit framework (done in ExampleIMVLibrary.cpp). This
defines the C-functions interface according to IF-IMV and maps those func-
tions to C++ methods of imunit. You must provide the class name of your
ExampleIMVLibrary implementation as argument. This causes the frame-
work to create an instance of ExampleIMVLibrary within the initialization
macro.

// TNC@FHH IMVLibrary Initialization +
// implement IF-IMV c-functions
TNCFHH_IMVLIBRARY_INITIALIZE(ExampleIMVLibrary) ;

d) Implement the pure virtual factory method. This method creates a new
instance of the ExampleIMV class (described in step 2). The method is
called when a new connection is created. The memory is freed when the
same connection is deleted.

tncfhh ::iml:: AbstractIMV *ExampleIMVLibrary :: createNewImvInstance(
TNC_ConnectionID conID)

{
LOG4CXX_TRACE(logger , "createNewImvInstance(" << conID << ")");
// just return a new instance of ExampleIMV
return new ExampleIMV(conID , this);

}

2. Create a class ExampleIMV that extends AbstractIMV.

a) Define the ctor (and dtor if necessary). The ctor needs the connection
ID and a pointer to the corresponding ExampleIMVLibrary as arguments.
Internally, this causes the instantiation of a TNCS object which can forward
the calls to the “real” TNCS via the pointer to the ExampleIMVLibrary
(which holds the function pointers to the “real” TNCS). The benefit is: you
as IMV developer can call methods of the TNCS instantiation to talk to
the “real” TNCS.

ExampleIMV :: ExampleIMV(TNC_ConnectionID conID , ExampleIMVLibrary *
pExampleIMVLibrary)

:AbstractIMV(conID , pExampleIMVLibrary)
{

// initialize
}

b) In contrast to the IMC part, there is no mandatory (pure virtual) method
that must be implemented by ExampleIMV. However, we will override sev-
eral optional methods.

8

i. Implement receiveMessage(). This is called to deliver a message from
the IMC which was received by the TNCS to the IMV. Here, our IMV
sends a new message if this is the first round of the TNC handshake.
Otherwise, it provides an allow recommendation. The round counter is
managed by the imunit framework as follows:
• set to 0 at the end of IMC/VLibrary::notifyConnectionChange()

when called with newState == TNC_CONNECTION_STATE_HANDSHAKE
• for IMC/V : increased before IMC/VLibrary::batchEnding returns
• for the IMC: increased before IMCLibrary::beginHandshake returns

TNC_Result ExampleIMV :: receiveMessage(TNC_BufferReference message ,
TNC_UInt32 messageLength , TNC_MessageType messageType)

{
LOG4CXX_DEBUG(logger , "receiveMessage round " << this ->getRound ())

;
// print received message dirty out. WARNING: don’t ape this ,
// message should end with non -null! Heed: Message can be evil!
LOG4CXX_INFO(logger , "Received Message: " << message);
/* only send one message to ExampleIMC */
if (this ->getRound () < 1) {

// this message should be send to ExampleIMC
std:: string sendMessage("Example message from ExampleIMV");
LOG4CXX_INFO(logger , "Send Message: " << sendMessage);
// send message
this ->tncs.sendMessage ((unsigned char*) sendMessage.c_str (),

sendMessage.size()+1/*for ’\0’*/, VENDOR_ID , MESSAGE_SUBTYPE)
;

} else {
/* validation finish , set recommendation & co */
validationFinished = true;
// for access allow:
actionRecommendation = TNC_IMV_ACTION_RECOMMENDATION_ALLOW;
// set evaluation (see TNC_IMV_EVALUATION_RESULT_ ...)
evaluationResult = TNC_IMV_EVALUATION_RESULT_DONT_KNOW;

}
// return all ok
return TNC_RESULT_SUCCESS;

}

ii. Implement batchEnding(). Here, it basically does nothing.
TNC_Result ExampleIMV :: batchEnding ()
{

LOG4CXX_TRACE(logger , "batchEnding");
// return all ok
return TNC_RESULT_SUCCESS;

}

iii. Implement notifyConnectionChange(). The new connection state can
be queried via the getConnectionState() method. Here, it basically does
nothing. Normally, you would change the state of your IMV according
to the connection state.

TNC_Result ExampleIMV :: notifyConnectionChange ()
{

LOG4CXX_TRACE(logger , "notifyConnectionChange");
/* if new handshake start */
if(this ->getConnectionState () == TNC_CONNECTION_STATE_HANDSHAKE)
/* reset IMV */;
// return all ok
return TNC_RESULT_SUCCESS;

}

9

3. Finished. Thats all for the IMV part.

You can find the ExampleIMC/V pair discussed here in the imunit-dev package.

5 Conclusion

By using the imunit framework of tnc@fhh, it is (from our point of view) pretty easy
to implement IMC/V pairs. One main benefit of our approach is that the developer
can benefit from an object oriented design and does not have to deal with plain C.

We appreciate any feedback, comments, request for features and so on. Just send
an email to trust@f4-i.fh-hannover.de.

6 Copyright and License

This software is Copyright (C) 2009 Fachhochschule Hannover (University of Applied
Sciences and Arts) Use is subject to license conditions. The main licensing options
available are Open Source or Commercial:

Open Source Licensing This is the appropriate option if you want to share the
source code of your application with everyone you distribute it to, and you also want
to give them the right to share who uses it. If you wish to use TNC@FHH under
Open Source Licensing, you must contribute all your source code to the open source
community in accordance with the GPL Version 2 when your application is distributed.
See http://www.gnu.org/copyleft/gpl.html

Commercial Licensing This is the appropriate option if you are creating proprietary
applications and you are not prepared to distribute and share the source code of your
application. Contact trust@f4-i.fh-hannover.de for details.

10

mailto:trust@f4-i.fh-hannover.de

	Introduction
	Coverage
	Architecture of imunit
	Structure of Directories
	Overall Design, Classes, Functions
	General Classes
	IMC-specific Classes
	IMV-specific Classes

	An ExampleIMC/V pair
	Coding the ExampleIMC
	Coding the ExampleIMV

	Conclusion
	Copyright and License

