

Fachhochschule Hannover University of Applied Sciences and Arts

Trusted Network Connect (TNC)

3rd European Trusted Infrastructure Summer School September 2008

Josef von Helden

University of Applied Sciences and Arts, Hanover josef.vonhelden@fh-hannover.de

Ingo Bente Jörg Vieweg Bastian Hellmann

© University of Applied Sciences and Arts, Hanover | TNC | Prof. Dr. Josef von Helden

Content

Introduction

- Network Access Control (NAC)
- Trusted Network Connect (TNC)
- TNC@FHH
- tNAC
- Conclusion

Introduction: Motivation

- Changing network structures
 - from static and homogeneous to dynamic and heterogeneous
 - mobile endpoints connect to and communicate with various networks
 - employees using their notebooks at home and at work
 - guest devices, e.g. consultants, students, ...
- hackers adapting their strategies
 - attacking the weakest IT component of a network: endpoints
 - stay hidden, waiting for crucial moments e.g.
 - spy on passwords,
 - eavesdrop on transactions,
 - doing evil work with the user's privileges after his/her successful authentication to a service

Introduction: Threats

- compromised endpoints are a threat to any network they are connecting to
- traditional security mechanisms like firewalls, IDS, VPNs, user authentication do not protect against those threats
- What is basically needed?
 - check the integrity status of every endpoint...
 - ... before it's getting access to my network
 - compare the integrity status against my policy
 - decide if (or how far) the endpoint is allowed to join my network
 - enforce the decision

Network Access Control (NAC)

Content

• Introduction

Network Access Control (NAC)

- Trusted Network Connect (TNC)
- TNC@FHH
- tNAC
- Conclusion

NAC: basic funcionalities

- User Authentication, e.g.
 - based on passwords or certificates
 - via VPN and IEEE 802.1X
- Configuration Assessment
 - Configuration measurement before network access
 - e.g. installed software like antivirus scanner and firewall
 - Compare measurements to policies of the network to access
 - → Integrity check of the computer system
 - Re-assess accepted computer systems in regular intervals
- Policy Enforcement
 - Enforce policies to non-compliant computer systems

- - - - Fachhochschule Hannover University of Applied Sciences and Arts

NAC: typical topology

NAC: solutions

- NAC solutions are already available on the market
- The most prominent:
 - Cisco Network Admission Control (Cisco NAC)
 - Microsoft Network Access Protection (NAP)
- And many more:
 - Juniper Unified Access Control
 - StillSecure Safe Access

- ...

NAC: requirements

- NAC solutions meet the basic requirements for checking the integrity status of endpoints "by definition".
- To gain significant benefit (at least) two important requirements have to be fulfilled
 - interoperability
 - enabling multi-vendor support
 - enabling customer's choice of security solutions and infrastructure
 - unforgeability
 - i.e. the network (resp. a security server in the network) can really trust in the integrity information provided by the endpoint (countering the "lying endpoint problem")

NAC: limitations of current solutions

- Today, no available NAC solution meets the requirements of interoperability and unforgeability
 - Cisco's NAC and Microsoft's NAP are both proprietary by design
 - first interoperability approaches
 - Microsoft opened their NAP-Client-Server-Protocol "SoH"
 - NAC-components themselves can get compromised
 - e.g. shown on Cisco CTA at BlackHat conference 2007
- In general: unforgeability presumes having
 - (a) hardware based root of trust which
 - (b) also is standardised to meet interoperability

Trusted Network Connect (TNC)

Content

- Introduction
- Network Access Control (NAC)

Trusted Network Connect (TNC)

- TNC@FHH
- tNAC
- Conclusion

© University of Applied Sciences and Arts | Trusted Network Connect | Prof. Dr. Josef von Helden

TNC: overview

- Open Architecture for NAC
 - Specified by the TNC Subgroup of the TCG
 - All specifications are publicly available
 - Enables multi-vendor interoperability
 - Supports existing technologies (802.1X, EAP)
- TNC Handshake consists of 3 phases
 - Assessment
 - TNC Platform Authentication
 - Identity + integrity of platform
 - Isolation
 - Quarantine non-healthy endpoints
 - Remediation
 - Fix problems and make endpoint healthy again

- - - - Fachhochschule Hannover University of Applied Sciences and Arts

TNC: basic architecture

[TNC Architecture for Interoperability Specification version 1.3 revision 6]

TNC: entities

- Access Requestor (AR)
 - requests access to a protected network
 - typically the endpoint, e.g. notebook, desktop, ...
- Policy Decision Point (PDP)
 - performing the decision-making regarding the AR's request, in light of the access policies.
 - typically a network server
- Policy Enforcement Point (PEP)
 - enforces the decisions of the PDP regarding network access
 - typically a switch, access point or VPN gateway

Fachhochschule HannoverUniversity of Applied Sciences and Arts

TNC: basic message flow

[TNC Architecture for Interoperability Specification version 1.3 revision 6]

TNC: Provisioning and Remediation Layer

[TNC Architecture for Interoperability Specification version 1.3 revision 6]

TNC: TPM support

- One main advantage of TNC compared to other NAC solutions
 - Supports use of the TPM during TNC Handshake
 - Promising approach to solve the "lying endpoint problem"
 - Goal: Ensure integrity of TNC subsystem located on the AR
- Idea: Use TPM capabilities during TNC Handshake
 - Create integrity reports
 - Including signed PCR values
 - AR sends integrity report to PDP
 - PDP compares received values to known good reference values
 - PDP can verify integrity of TNC subsystem
- AR cannot successfully lie about its current integrity state!

TNC: TPM support – additional components

- PTS (Platform Trust Services)
 - System service on the AR
 - Exposes Trusted Platform capabilities to TNC components

- Further components
 - TPM (Trusted Platform Module)
 - Implements Trusted Platform's capabilities
 - TSS (Trusted Software Stack)
 - Exposes high level interface to TPM for applications
 - IML (Integrity Measurement Log)
 - Stores list of integrity measurements on AR

TNC: TPM extended architecture

[TNC Architecture for Interoperability Specification version 1.3 revision 6]

TNC: Reflecting interoperability / unforgeability

- interoperability
 - generally:
 - fulfilled, because all specifications are publicly available
 - in reality:
 - some experiences with TNC@FHH (see below ...)
- unforgeability
 - generally:
 - fulfilled because TPM support is integrated in the design of the architecture
 - in reality:
 - futher reasearch and devolopment needed (see tNAC slides below...)

Content

- Introduction
- Network Access Control (NAC)
- Trusted Network Connect (TNC)

• TNC@FHH

- tNAC
- Conclusion

TNC@FHH: overview

- Open source implementation of TNC
- Developed at University of Applied Sciences and Arts, Hanover
- Implements all core TNC components/layers/interfaces
- No TPM support ... yet

- - - - Fachhochschule Hannover University of Applied Sciences and Arts

TNC@FHH: architecture

TNC@FHH: interoperability tests

- results from TNC plugfest in March 2008
 - different TNC implementations, mainly from open source developments, worked together (almost) without additional effort
 - conclusion:

high degree of interoperability between main TNC components due to high quality of the specifications, especially

- IMCs and TNC Client, due to IF-IMC
- IMVs and TNC Server, due to IF-IMV
- TNC Client and TNC Server, due to IF-TNCCS
- NAR and NAA, due to IF-T
- NAA and PEP, due to IF-PEP

--Fachhochschule HannoverUniversity of Applied Sciences and Arts

TNC@FHH: TNC plugfest 2008

TNC support by commercial products

- results from researches in August 2008
 - only few commercial products support the TNC specification partly, i.e.
 - IF-IMC / IF-IMV to integrate IMC/IMV-pairs from different vendors
 - IF-PEP to support various PEPs
 - no commercial product supporting IF-TNCCS could be found

Content

- Introduction
- Network Access Control (NAC)
- Trusted Network Connect (TNC)
- TNC@FHH

Conclusion

TNC: coming back to unforgeability...

• ... remember the TPM extended architecture

TNC: PTS features

- Creates integrity reports
 - Makes them available to IMCs / TNCC
 - Enables them to be used during TNC Handshake
 - Ensures that they are rendered in an standardised format
 - TCG Schema Specifications
- Measures integrity status of ...
 - TNC components
 - On disk & in memory measurements
 - Appends measurements to IML
- Why should one trust the PTS ?

TNC: PTS & The Chain of Trust

- PTS must be part of the Chain of Trust
 - Measure PTS before execution
 - Not supported by "normal" OS
 - Need for a Trusted OS
- PTS responsible for measuring (at least) TNC components
 - TNC components become part of Chain of Trust, too
- Benefit
 - Chain of Trust up to Application Level
 - Especially including TNC components on the AR
 - Integrity of TNC subsystem can be ensured
 - No lying endpoint problem anymore
- How are integrity reports communicated between AR and PDP ?

TNC: PTS IMC/IMV

- Special IMC/IMV pair
 - What ?
 - Responsible for communicating integrity reports
 - PTS-IMC interfaces with PTS to obtain integrity reports
 - Communicates them to PTS-IMV during TNC handshake
 - PTS-IMV evaluates received integrity reports
 - How ?
 - Open issue
 - IF-M protocol between IMC/IMV generally implementation specific
 - TCG expects to standardise widely useful IF-M protocols
 - Like IF-M between PTS-IMC/IMV
 - Essential for interoperability between a PTS-IMC and a PTS-IMV from different vendors

TNC: Establishing TNC Subsystem Integrity

- Collection of Integrity Data
 - Pre-OS Boot
 - Starting from RTM : BIOS, OS-Loader, OS-Image
 - Pre-PTS Startup
 - OS must measure PTS (including TSS)
 - PTS Operation
 - Measure TNC components (NAR, TNCC, PTS-IMC, further IMCs)
 - Render measurements in interoperable format
 - PTS-IMC Collection
 - Obtain Integrity report containing Chain of Trust from PTS
- Reporting to PTS-IMV via IF-M
 - PTS-IMV evaluates integrity report
 - Provides access decision along with all other IMVs

TNC: Further Integrity Checks

- Motivation
 - Check integrity of further applications on the AR
 - E.g. Anti Virus, Firewall ... in addition to its configuration
- (At least) two possible approaches
 - Application specific IMC/IMV pair interacting with PTS
 - IMC/IMV pair measures configuration and integrity
 - Needs to interact with PTS ... standardised but quite advanced
 - What about standardised IF-M?
 - PTS-IMC/IMV measures further integrity aspects
 - IF-M must support that PTS-IMV requests integrity checks of arbitrary components
 - No need for application specific IMC/IMV pair to care about PTS
 - Very complex process of decision making

SPONSORED BY THE

Federal Ministry of Education and Research

tNAC: the project

- Research Project:
 - Started on July, 1st 2008
 - Scheduled for 3 years
- Consortium consisting of
 - University of Applied Sciences and Arts Hanover
 - University of Applied Sciences Gelsenkirchen
 - Ruhr-University Bochum
 - Datus AG
 - Sirrix AG
 - Steria Mummert Consulting AG
 - and some other companies
- Sponsored by the Federal Ministry of Education and Research

tNAC: objectives

- Develop a Trusted Network Access Control Solution
 - TNC compatible NAC solution with full TPM support
- Analyse requirements & evaluate effectiveness of tNAC
 - Based upon real world scenarios
- Participate in TCG's specification process
 - Contribution to IF-M between PTS-IMC/IMV
- Management
 - Keep (t)NAC manageable (Policy-Manager, Management-Console)
 - Focus on usability as well as technology

tNAC: Turaya and TNC@FHH

- Combine results of two research projects
- Turaya
 - Open source security platform
 - Developed by the former EMSCB-Project
 - Supports strong isolation of security critical processes in "compartments"
- TNC@FHH
 - Open source based implementation of TNC
 - Developed at University of Sciences, Hanover
 - Implements all core TNC components/layers/interfaces
 - No TPM support ... yet

tNAC: adoption of TNC in real world scenarios

- first analyses (two master thesis) in 2008 with focus on
 - adoption of TNC in the LAN environment of a company
 - adoption of TNC in the VPN environment of a company
- summary of the results
 - security benefit of a TNC solution is evident and desired (by the companies)
 - several handicaps prevent the adoption today, especially
 - high complexity of policy definition and enforcement
 - efforts and investments required for integration of TNC into the existing IT infrastructure
 - today's impossibility to achieve unforgeability due to the lack of TPM support in standard operating systems

Content

- Introduction
- Network Access Control (NAC)
- Trusted Network Connect (TNC)
- TNC@FHH
- tNAC

Conclusion

Conclusion (1/2)

- TNC seems to be the most hopeful approach towards a real interoperable, real trusted NAC solution:
 - interoperability and unforgeability included by design
 - interoperability in TNC is obviously actually good
 - although: today commercial products supporting TNC are rare
 - unforgeability is well designed but hard to achieve
 - further research and development activities as well as further specifications and standardisations are needed

Conclusion (2/2)

- The need for such a solution will grow according to
 - the increasing importance of endpoint security for the overall network security and
 - the strongly increasing security threats to endpoints.
- TCG and many others (like the tNAC consortium) are working on further developments and enhancements required for a real interoperable, real trusted NAC solution.