Trusted Network Connect (TNC)

Josef von Helden
josef.vonhelden@inform.fh-hannover.de

Martin Schmiedel
Daniel Wuttke

First European Summer School on Trusted Infrastructure Technologies
September 2006
Agenda

- Motivation
- IT Security today...
 ... a dead end street?
- Vision of a modern IT security architecture
- Trusted Network Connect
 - overview
 - features, entities, architecture, ...
 - TNC implementation at FHH
 - TNC with TPM
 - (some) challenges and questions
- Conclusion
- References
Motivation

- organisational conditions call for action, e.g. Sarbanes Oxley Act (SOX), Basel II Accord
- new and more sophisticated IT-based attacks...
- ... example...
 - an attacker wants to compromise a server...
 ... which is behind a hard to break firewall ...
 - thus, take the more clever approach:
 - first, compromise the client (much easier)...
 ... and stay hidden on the client...
 - wait for the client to authenticate itself to the server
 - (mis)use the authenticated connection for attacking the server
 ... and still stay hidden ...
IT security today

- more or less isolated security solutions for specific problems, e.g.
 - firewalls to protect the corporate network against attacks from the outside
 - virus scan engines to find malicious code
 - filter software against spam
 - IDS for alerting in case of suspicion of intrusion
 - …
... a dead-end street?

- The internal network has to be more opened, due to strong increase of the need for electronic business with partners.
 - decreases the effectiveness of central firewall systems
- Growing need for public zones in LANs including the acceptance and integration of foreign endpoints
 - consultants, students, guests, ...
 - endpoints are often under user‘s control
- New computing paradigms, e.g. Grid computing
 - raising new security issues
- Sophisticated attacks target at client software to (e.g.) compromise servers over the Web (s.a.)
- It’s hard to track network wide security incidents.
Vision...

- ... of a modern, effective IT security architecture
- features
 - distributed
 - with respect to the higher importance of endpoint security
 - security begins at the edge of the network
 - checking of endpoints (integrity and authenticity) before joining the network and periodically thereafter
 - integrated
 - "Security goes inline": Integration into network devices (eg. switches, access points)
 - cooperative
 - interaction of technologies and tools
 - open
 - open specification and standards allow communication between entities from different vendors
 - central, integrated management
Benefits

- “distributed” incl. endpoints
 - strong prevention against malware attacks
- “integrated”
 - comprehensive coverage for network endpoints regardless of access type, network infrastructure, and communications protocol
 - flexible handling of non-compliant endpoints
- “cooperative”
 - detection of complex attacks by bringing together events and alarms from different sites
- “open”
 - multi-vendor compatibility and interoperability
 - leverages existing network infrastructure
- „central, integrated management“
 - enterprise-wide deployment
 - enforcement of a uniform security policy for different levels (user, group, access point, ...)

Fachbereich Informatik | Prof. Dr. Josef von Helden | TNC
How to prepare for the future?

- Don‘t focus security on the central firewall system between internal and external networks exclusively, but...
- ... take into account distributed security measures at the edge of your network.
- Integrate endpoint security (integrity / authenticity checking) into security architecture, based on a uniform security policy.
- Prefer open standards against proprietary solutions.
Trusted Network Connect (TNC) Overview

- an open, non-proprietary standard that enables the application and enforcement of security requirements for endpoints connecting to the corporate network
 - enables customer choice of security solutions and infrastructure
 - adopts existing standards whenever possible
 - received thorough and open technical review
 - support for multi-vendor interoperability
- more than 60 participating companies
 - include those with expertise in firewalls and anti-virus products; switches, routers and hubs; systems management; and operating systems
TNC: Features (1)

- Platform Authentication
 - Platform Credential Verification
 - Integrity Check Handshake
- Endpoint Policy Compliance (Authorisation)
 - establishing a level of ‘trust’
 - examples:
 - ensuring the presence, status, and software version of mandated applications
 - completeness of virus-signature databases, intrusion detection and prevention system applications
 - the patch level of the endpoint’s operating system and applications
 - input to the authorisation decision for gaining access to the network
TNC: Features (2)

- **Access Policy**
 - endpoint machine and/or its user authenticates and discloses their security posture before connecting to the network
 - leveraging a number of existing and emerging standards, products, or techniques

- **Assessment, Isolation and Remediation**
 - systems not meeting security policy requirements can be isolated or quarantined
 - remediation (if possible), e.g. upgrading software or virus signature database
TNC: Entities

- **Access Requestor (AR)**
 - requests access to a protected network
 - typically the endpoint, e.g. notebook, desktop, ...

- **Policy Decision Point (PDP)**
 - performing the decision-making regarding the AR’s request, in light of the access policies.
 - typically a network server

- **Policy Enforcement Point (PEP)**
 - enforces the decisions of the PDP regarding network access
 - typically a switch or access point
TNC: Architecture

![Diagram of TNC Architecture]

TNC: Basic Message Flow

TNC: Assessment, Isolation, Remediation (1)

- Assessment phase
 - IMVs perform the verification of the AR following the policies and if necessary delivers remediation instructions to the IMCs

- Isolation phase
 - if AR
 - is authenticated and recognised to have some privileges but
 - has not passed the integrity-verification by the IMV
 - then PDP
 - may return instructions to the PEP to redirect the AR to an isolation environment where the AR can obtain integrity-related updates.
TNC: Assessment, Isolation, Remediation (2)

- Remediation phase
 - AR obtaining corrections to its current platform configuration and other policy-specific parameters
 - bringing it inline with the PDP’s requirements for network-access
TNC: Provisioning and Remediation Layer

TNC: Provisioning and Remediation Entities

- Provisioning & Remediation Applications (PRA)
 - communicates with the IMC and provides it with specific types of integrity information, e.g. latest AV signature files
 - could be implemented as part of the IMC

- Provisioning & Remediation Resources (PRR)
 - represents the various sources of integrity information needed to update the AR, e.g. enterprise servers, vendor services (e.g. FTP server), CDs/DVDs containing the update parameters
TNC: Supporting Technologies

- Network access technologies
 - 802.1x, VPN, PPP
- Message transport technologies
 - Protected EAP methods
 - EAP-TLS, EAP-TTLS, PEAP, EAP-FAST, ...
 - TLS und HTTPS
- PDP technologies
 - RADIUS
 - Diameter
TNC: Benefits (1)

- Potentially very high security risks arising from compromised endpoints will be beaten down to a minimum, e.g.
 - employees connect their mobile devices at home to the open Internet
 - resulting in malware being inadvertently downloaded onto the device
 - when connected to the corporate network, the device becomes a distributor of the malware to other devices on the enterprise network
TNC: Benefits (2)

- With TNC verifiers
 - may ascertain the security state of a given platform or device and
 - thus, have the ability to decide
 - when it is safe to extend the enterprise boundary to a connecting platform
 - based on the integrity information reported by the platform and by the proof-of-identity supplied by the platform
TNC: Implementation at FHH (1)

- Two master thesis, both starting Feb. 06
 - Development of client and server software for checking trustworthiness of network endpoints
 - main goal: implementation of TNCC and TNCS
 - Adapting software for automatic integrity checking of endpoints
 - main goal: implementation of IMCs and IMVs
TNC: Implementation at FHH (2)

- Technologies used for Network Access Layer:
 - 802.1x
 - Ethernet-based LAN (no WLAN)
 - RADIUS

- Technologies used during development
 - C++ as programming language
 - Eclipse with CDT-plugin as IDE
 - Xerces for parsing TNCCS-messages and IMC-IMV-messages
 - xWidgets for TNCC User Interface
 - FreeRadius server

- Platforms:
 - Windows XP: TNC Client
 - Cygwin as runtime-environment
 - SuSE Linux 9.3: TNC Server
TNC: Implementation at FHH (3)

Architecture

Communication via EAP-TNC
TNC: Implementation at FHH (4)

- Developed IMCs / IMVs:
 - IMCRegistry / IMVRegistry:
 - reads out Windows Registry entries
 - IMV checks whether specific security-relevant entries are present
 - Registry entries to be checked are configurable on server-side
 - IMCHostScanner / IMVHostScanner:
 - checks for open ports on Access Requestor
 - port numbers to be checked are configurable on server-side
 - IMCSecurityCenter / IMVSecurityCenter:
 - checks parameters from Windows Security Center and detects if anti-virus software and firewall are installed and up-to-date
 - IMCClamWin / IMVClamWin:
 - checks if ClamWin (open source anti-virus software) is installed and up-to-date
TNC: Implementation at FHH (5)

- **TNCC User interface**
 - enables transparency of actions to user
 - gives control to user about handshake
TNC: Implementation at FHH (6)

- Detailed Logging enables reproduction of actions

TNC Client started
IMCs loaded
IMCs initialized
Connection to PEP established
Starting initial Handshake for IMC ClamWin

**** Received Message from IMC IMC ClamWin (ID: 2, MessageType: ffff0020):
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<FHH.IMC.ClamWin version="1.0">
 <ClamWin installed="false"/>
</FHH.IMC.ClamWin>

**
Round finished for IMC ClamWin
1. round (IMCs->IMVs, Outgoing data):

Size of Batch: 1520
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<TNCCS-Batch BatchId="0" Recipient="TNCS", ...>
 <IMC-IMV-Message>
 <Type>FFFF0020</Type>
 <Base64>PD94bWwgdmVyc2lvbj0iMS4wI…</Base64>
 </IMC-IMV-Message>…
TNC: Implementation at FHH (7)

◆ Experiences:
 ➢ good specification documents from TCG
 ➢ difficult task: implementing Network Access with Windows
 ➢ usual problems of C++ development 😊

◆ Limitations:
 ➢ no encrypted EAP-TNC messages
 ➢ no Remediation Phase (Start TNC Client once again! 😊)
 ➢ no TPM support
 ➢ only simple policy specification on TNC Server
TNC with TPM: Features (1)

◆ Protected Capabilities
 ➢ a set of commands with exclusive permission to access „Shielded Locations“
 ➢ examples for TPM usage in TNC
 ➢ protect and report aggregations of integrity measurements that are stored inside the TPM’s Platform Configuration Registers (PCR)
 ➢ store cryptographic keys used to authenticate reported measurements
TNC with TPM: Features (2)

◆ Integrity Measurement and Storage
 ➢ obtaining metrics of platform characteristics that affect the integrity (trustworthiness) of a platform
 ➢ storing those metrics
 ➢ putting digests of those metrics in PCRs.

◆ Integrity Reporting
 ➢ attesting to the contents of integrity storage, i.e. stored measurement log
 ➢ signed using the private key held (e.g. AIK-certificate) located in shielded locations in the TPM
TNC with TPM: Features (3)

◆ Attestation
 ➢ vouching for the accuracy of information, such that a relying party can use the attestation to decide whether it trusts the remote platform

◆ Evaluation and Decision Making
 ➢ allows delegation of evaluation to a 3rd party
 ➢ outcome not limited to binary results

◆ Enforcement and Response
 ➢ evaluating platform may in fact be a PEP or may return responses to another platform
TNC with TPM: Architecture

TNC with TPM: Entities

- in general the same entities as without TPM
- one additional entity: Privacy Certification Authority
 - issues AIK certificates to trusted platforms
 - trusted by both parties
 - needed if AR and PEP/PDP have different „owners“
TNC with TPM: Components

◆ Platform Trust Services (PTS)
 ➢ exposes trusted platform capabilities to TNC components, including
 ➢ protected key storage, asymmetric cryptography, random numbers, platform identity, platform configuration reporting and integrity state tracking

◆ TCG Software Stack (TSS)
 ➢ enables applications to use higher level interfaces for communication with the TPM support functions, including
 ➢ unlimited key storage (off-chip protected), key caching, higher-level interface abstraction
TNC with TPM: Benefits

- TPM provides a strong hardware-protected root-of-trust.
- This is needed to ensure malware and improperly configured software cannot report an erroneous status.
- The use of the TPM prevents a system from lying about what the platform is running so others can determine if the endpoint has the desirable integrity.
TNC: (some) challenges and questions

- How good does TNC work in real (complex) network environments?
- How can TNC environments be effectively managed and security policies be effectively enforced?
- What are benefits, side effects and impacts of TNC, regarding different operating scenarios?
- What scenarios are suited for operating TNC with / without TPM?
- What are security / privacy issues of TNC with / without TPM?

- Is TNC able to become a de facto standard?
- Does TNC really make the world more secure?
- ...
Conclusions

◆ A distributed, integrated, cooperative and open security architecture can leverage security significantly.

◆ TNC seems to be more than a well suited starting basis, due to
 ➢ its use of the TCG Platform-Authentication approach as a critical part of achieving true trusted network connections
 ➢ its openness and broad vendor support

◆ There are several challenges and questions...
 ➢ ... some further research and development efforts seem to be required
References

- www.trustedcomputinggroup.org
 - home of the Trusted Computing Group
- www.trustedcomputinggroup.org/groups/network/
 - home of the Trusted Network Connect Sub Group (TNC-SG)
- www.trustedcomputinggroup.org/specs/TNC/
 - TNC-SG specs, e.g.